# NOT RUN {
# Test of mutual independence between 3 independent Bernoulli variables.
n <- 100
data <- data.frame(X1 = rbinom(n, 1, 0.3), X2 = rbinom(n, 1, 0.3) , X3 =
rbinom(n, 1, 0.3))
X <- table(data)
A.dep.tests(X)
# Test of mutual independence between 4 variables which are
# 2-independent and 3-independent, but are 4-dependent.
n <- 100
W <- sample(x = 1:8, size = n, TRUE)
X1 <- W %in% c(1, 2, 3, 5)
X2 <- W %in% c(1, 2, 4, 6)
X3 <- W %in% c(1, 3, 4, 7)
X4 <- W %in% c(2, 3, 4, 8)
data <- data.frame(X1, X2, X3, X4)
X <- table(data)
A.dep.tests(X)
# Test of serial independence of a nucleotide sequence of length
# 4156 described in Whisenant et al. (1991).
data(dna)
x2 <- dna[1]
for (i in 2:length(dna)) x2 <- paste(x2, dna[i], sep = "")
x <- unlist(strsplit(x2, ""))
x[x == "a" | x == "g"] <- "r"
x[x == "c" | x== "t"] <- "y"
# }
# NOT RUN {
out <- A.dep.tests(x, choice = 2, d = 1501, m = 2)$TA[[1]]
plot(100:1500, out[100:1500], xlab = "lag j", ylab = "T(1,j+1)", pch = 19)
abline(h = qchisq(.995, df = 1))
# }
# NOT RUN {
# Analysis of a contingency table in Agresti (2002) p. 322
data(highschool)
A.dep.tests(highschool, freqname = "count")
# }
Run the code above in your browser using DataLab