Learn R Programming

Interpol.T (version 2.1.1)

shape_calibration: Calibrates the shape of the night interpolating curve

Description

Calibrates the shape of the night interpolating curve, either horizontal-axe parabola or line, by changing the exponent z (see reference). It functions according to the comparison of the daily thermal range and the climate (reference) monthly one.

Usage

shape_calibration(meas, date.format = "ymd", cal_times_list, band_min = 0:23, band_max = 0:23, ratio_dtr_range = c(0, 6), nr_cycles = 10, min_mo.length = 21, full.24.hrs.span_min = TRUE, silent = FALSE)

Arguments

meas
measured hourly values file (table), where the first column is the series' ID
date.format
input date format (formats for function chron)
cal_times_list
calibration list of "time" parameters (output of par_calibration)
band_min
band of hours of occurrence of day minimum in the daily series (continuous). See Note
band_max
same for maximum time
ratio_dtr_range
range for seeking the optimal value of ratio_dtr
nr_cycles
number of calibration trials within the calibration ranges (all)
min_mo.length
minimum number of days to calculate any monthly values of dtr (is passed to function Mo.Th.Ra.)
full.24.hrs.span_min
logical, if set to FALSE does not allow to shift minimum time to the late hours of the day
silent
logical, if set to TRUE suppresses any warning issue

Value

A list containing the optimum values of ratio_dtr

References

Eccel, E., 2010: What we can ask to hourly temperature recording. Part II: hourly interpolation of temperatures for climatology and modelling. Italian Journal of Agrometeorology XV(2):45-50 http://www.agrometeorologia.it/documenti/Rivista2010_2/AIAM%202-2010_pag45.pdf,www.agrometeorologia.it

Original algorithm from: Cesaraccio, C., Spano, D., Duce, P., Snyder, R.L., 2001. An improved model for determining degree-day values from daily temperature data. Int. J. Biometeorol. 45: 161-169. http://www.springerlink.com/content/qwctkmlq3tebthek/

See also: Eccel, E., 2010: What we can ask to hourly temperature recording. Part I: statistical vs. meteorological meaning of minimum temperature. Italian Journal of Agrometeorology XV(2):41-43. http://www.agrometeorologia.it/documenti/Rivista2010_2/AIAM%202-2010_pag41.pdf,www.agrometeorologia.it

See Also

par_calibration, Th_interp

Examples

Run this code
library(Interpol.T)
data(Trentino_hourly_T)

stations <- c("T0001","T0010","T0129")

calibration_shape <- shape_calibration(meas = h_d_t[h_d_t$V1 %in% stations,],
						cal_times_list = calibration_l[stations],
                     band_min = 0:23, band_max = 0:23, ratio_dtr_range = c(0,4),
						min_mo.length=21)

Run the code above in your browser using DataLab