weightedmean(x, ...)# S3 method for default
weightedmean(x, detect.outliers = TRUE, plot = TRUE,
rect.col = rgb(0, 1, 0, 0.5), outlier.col = rgb(0, 1, 1, 0.5),
sigdig = 2, alpha = 0.05, ...)
# S3 method for UPb
weightedmean(x, detect.outliers = TRUE, plot = TRUE,
rect.col = rgb(0, 1, 0, 0.5), outlier.col = rgb(0, 1, 1, 0.5),
sigdig = 2, type = 4, cutoff.76 = 1100, cutoff.disc = c(-15, 5),
alpha = 0.05, exterr = TRUE, ...)
# S3 method for ArAr
weightedmean(x, detect.outliers = TRUE, plot = TRUE,
rect.col = rgb(0, 1, 0, 0.5), outlier.col = rgb(0, 1, 1, 0.5),
sigdig = 2, alpha = 0.05, exterr = TRUE, i2i = FALSE, ...)
# S3 method for ReOs
weightedmean(x, detect.outliers = TRUE, plot = TRUE,
rect.col = rgb(0, 1, 0, 0.5), outlier.col = rgb(0, 1, 1, 0.5),
sigdig = 2, alpha = 0.05, exterr = TRUE, i2i = TRUE, ...)
# S3 method for SmNd
weightedmean(x, detect.outliers = TRUE, plot = TRUE,
rect.col = rgb(0, 1, 0, 0.5), outlier.col = rgb(0, 1, 1, 0.5),
sigdig = 2, alpha = 0.05, exterr = TRUE, i2i = TRUE, ...)
# S3 method for RbSr
weightedmean(x, detect.outliers = TRUE, plot = TRUE,
rect.col = rgb(0, 1, 0, 0.5), outlier.col = rgb(0, 1, 1, 0.5),
sigdig = 2, alpha = 0.05, exterr = TRUE, i2i = TRUE, ...)
# S3 method for UThHe
weightedmean(x, detect.outliers = TRUE, plot = TRUE,
rect.col = rgb(0, 1, 0, 0.5), outlier.col = rgb(0, 1, 1, 0.5),
sigdig = 2, alpha = 0.05, exterr = TRUE, ...)
# S3 method for fissiontracks
weightedmean(x, detect.outliers = TRUE, plot = TRUE,
rect.col = rgb(0, 1, 0, 0.5), outlier.col = rgb(0, 1, 1, 0.5),
sigdig = 2, alpha = 0.05, exterr = TRUE, ...)
UPb
, ArAr
, ReOs
, SmNd
, RbSr
,
fissiontracks
or UThHe
detect.outliers=TRUE
, the outliers are
given a different colour.type
=1), the
\(^{206}\)Pb/\(^{238}\)U age (type
=2), the
\(^{207}\)Pb/\(^{206}\)Pb age (type
=3), the
\(^{207}\)Pb/\(^{206}\)Pb-\(^{206}\)Pb/\(^{238}\)U age
(type
=4), or the (Wetherill) concordia age (type
=5)type=4
.cutoff.76
) or
between the \(^{206}\)Pb/\(^{238}\)U and
\(^{207}\)Pb/\(^{206}\)Pb age (if
\(^{206}\)Pb/\(^{238}\)U > cutoff.76
). Set
cutoff.disc=NA
if you do not want to use this filter.i2i
to FALSE
uses the default values stored in
settings('iratio',...)
PLOT=FALSE
, returns a list with the following
items: ages <- c(251.9,251.59,251.47,251.35,251.1,251.04,250.79,250.73,251.22,228.43)
errs <- c(0.28,0.28,0.63,0.34,0.28,0.63,0.28,0.4,0.28,0.33)
weightedmean(cbind(ages,errs))
data(examples)
weightedmean(examples$ArAr)
Run the code above in your browser using DataLab