Takes geochronology data as input and produces a five-column table with the variables, their uncertainties and error correlations as output. These can subsequently be used for York regression.
data2york(x, ...)# S3 method for default
data2york(x, format = 1, ...)
# S3 method for other
data2york(x, ...)
# S3 method for UPb
data2york(x, option = 1, tt = 0, ...)
# S3 method for ArAr
data2york(x, inverse = TRUE, ...)
# S3 method for ThPb
data2york(x, inverse = FALSE, ...)
# S3 method for KCa
data2york(x, inverse = FALSE, ...)
# S3 method for PbPb
data2york(x, inverse = TRUE, ...)
# S3 method for PD
data2york(x, exterr = FALSE, inverse = FALSE, ...)
# S3 method for UThHe
data2york(x, ...)
# S3 method for ThU
data2york(x, type = 2, generic = TRUE, ...)
a five-column table that can be used as input for
york-regression.
a five or six column matrix OR an object of class
UPb, PbPb, ThPb, ArAr, ThU,
UThHe, or PD (which includes objects of class
RbSr, SmNd, LuHf and ReOs),
generated by the read.data(...) function
optional arguments
one of
1 or 2: X, s[X], Y, s[Y],
rXY; where rXY is the error correlation between
X and Y; or
3: X/Z, s[X/Z], Y/Z, s[Y/Z],
X/Y, s[X/Y]; for which the error correlations are
automatically computed from the redundancy of the three ratios.
one of
1: Wetherill concordia ratios: X=07/35,
sX=s[07/35], Y=06/38, sY=s[06/38], rXY.
2: Tera-Wasserburg ratios: X=38/06,
sX=s[38/06], Y=07/06, sY=s[07/06], rXY.
3: X=38/06, sX=s[38/06], Y=04/06,
sY=s[04/06], rXY (only valid if x$format=4,5
or 6).
4: X=35/07, sX=s[35/07], Y=04/07,
sY=s[04/07], rXY (only valid if x$format=4,5
or 6).
5: U-Th-Pb concordia ratios: X=06/38,
sX=s[06/38], Y=08/32, sY=s[08/32],
rXY (only valid if x$format=7,8).
6: X=38/06, sX=s[38/06], Y=08/06,
sY=s[08/06], rXY (only valid if x$format=7,8).
7: X=35/07, sX=s[35/07], Y=08/07,
sY=s[08/07], rXY (only valid if x$format=7,8).
8: X=32/08, sX=s[32/08], Y=06/08,
sY=s[06/08], rXY (only valid if x$format=7,8).
9: X=32/08, sX=s[32/08], Y=07/08,
sY=s[07/08], rXY (only valid if x$format=7,8).
the age of the sample. This is only used if
x$format=7 or 8, in order to calculate the
inherited \({}^{208}\)Pb/\({}^{232}\)Th ratio.
toggles between normal and inverse isochron
ratios. data2york returns five columns X,
s[X], Y, s[Y] and r[X,Y].
If inverse=TRUE, then X =
\({}^{204}\)Pb/\({}^{206}\)Pb and Y =
\({}^{207}\)Pb/\({}^{206}\)Pb (if x has class
PbPb), or X = \({}^{232}\)Th/\({}^{208}\)Pb and
Y = \({}^{204}\)Pb/\({}^{208}\)Pb (if x has class
ThPb), or X = \({}^{39}\)Ar/\({}^{40}\)Ar and
Y = \({}^{36}\)Ar/\({}^{40}\)Ar (if x has class
ArAr), or X = \({}^{40}\)K/\({}^{40}\)Ca and
Y = \({}^{44}\)Ca/\({}^{40}\)Ca (if x has class
KCa), or X = \({}^{87}\)Rb/\({}^{87}\)Sr and
Y = \({}^{86}\)Sr/\({}^{87}\)Sr (if x has class
RbSr), or X = \({}^{147}\)Sm/\({}^{143}\)Nd and
Y = \({}^{144}\)Nd/\({}^{143}\)Nd (if x has class
SmNd), or X = \({}^{187}\)Re/\({}^{187}\)Os and
Y = \({}^{188}\)Os/\({}^{187}\)Os (if x has class
ReOs), or X = \({}^{176}\)Lu/\({}^{176}\)Hf and
Y = \({}^{177}\)Hf/\({}^{176}\)Hf (if x has class
LuHf).
If inverse=FALSE, then X =
\({}^{206}\)Pb/\({}^{204}\)Pb and Y =
\({}^{207}\)Pb/\({}^{204}\)Pb (if x has class
PbPb), or X = \({}^{232}\)Th/\({}^{204}\)Pb and
Y = \({}^{208}\)Pb/\({}^{204}\)Pb (if x has class
ThPb), or X = \({}^{39}\)Ar/\({}^{36}\)Ar and
Y = \({}^{40}\)Ar/\({}^{36}\)Ar (if x has class
ArAr), or X = \({}^{40}\)K/\({}^{44}\)Ca and
Y = \({}^{40}\)Ca/\({}^{44}\)Ca (if x has class
KCa), or X = \({}^{87}\)Rb/\({}^{86}\)Sr and
Y = \({}^{87}\)Sr/\({}^{86}\)Sr (if x has class
RbSr), or X = \({}^{147}\)Sm/\({}^{144}\)Nd and
Y = \({}^{143}\)Nd/\({}^{144}\)Nd (if x has class
SmNd), or X = \({}^{187}\)Re/\({}^{188}\)Os and
Y = \({}^{187}\)Os/\({}^{188}\)Os (if x has class
ReOs), or X = \({}^{176}\)Lu/\({}^{177}\)Hf and
Y = \({}^{176}\)Hf/\({}^{177}\)Hf (if x has class
LuHf).
If TRUE, propagates the external uncertainties
(e.g. decay constants) into the output errors.
Return `Rosholt' or `Osmond' ratios?
Rosholt (type=1) returns X=8/2, sX=s[8/2],
Y=0/2, sY=s[0/2], rXY.
Osmond (type=2) returns X=2/8, sX=s[2/8],
Y=0/8, sY=s[0/8], rXY.
If TRUE, uses the following column headers:
X, sX, Y, sY, rXY.
If FALSE and type=1, uses U238Th232,
errU238Th232, Th230Th232, errTh230Th232, rXY
or if FALSE and type=2, uses Th232U238,
errTh232U238, Th230U238, errTh230U238, rXY.
york
f <- system.file("RbSr1.csv",package="IsoplotR")
dat <- read.csv(f)
yorkdat <- data2york(dat)
fit <- york(yorkdat)
Run the code above in your browser using DataLab