- Surv_object
an object:
of class 'coxph' fitted by function coxph() from package survival, or
of class 'survreg' fitted by function survreg() from package survival.
- Mixed_objects
a list of objects or a single object. Objects may be:
of class 'lme' fitted by function lme() from package nlme, or
of class 'MixMod' fitted by function mixed_model() from package GLMMadaptive.
- time_var
a character string indicating the time variable in the mixed-effects model(s).
- recurrent
a character string indicating "calendar" or "gap" timescale to fit a recurrent event model.
- functional_forms
a list of formulas. Each formula corresponds to one longitudinal outcome and specifies the association structure between that outcome and the survival submodel as well as any interaction terms between the components of the longitudinal outcome and the survival submodel. See Examples.
- which_independent
a numeric indicator matrix denoting which outcomes are independent. It can also be the character string "all" in which case all longitudinal outcomes are assumed independent. Only relevant in joint models with multiple longitudinal outcomes.
- base_hazard
a character vector indicating the type of hazard function.
- data_Surv
the data.frame used to fit the Cox/AFT survival submodel.
- id_var
a character string indicating the id variable in the survival submodel.
- priors
a named list of user-specified prior parameters:
mean_betas_HC
the prior mean vector of the normal prior for the regression coefficients of the covariates of the longitudinal model(s), which were hierarchically centered.
Tau_betas_HC
the prior precision matrix of the normal prior for the regression coefficients of the longitudinal model(s), which were hierarchically centered.
mean_betas_nHC
a list of the prior mean vector(s) of the normal prior(s) for the regression coefficients of the covariates of the longitudinal model(s), which were not hierarchically centered.
Tau_betas_nHC
a list of the prior precision matrix(ces) of the normal prior(s) for the regression coefficients of the longitudinal model(s), which were not Hierarchically Centered.
mean_bs_gammas
the prior mean vector of the normal prior for the B-splines
coefficients used to approximate the baseline hazard.
Tau_bs_gammas
the prior precision matrix of the normal prior for the B-splines
coefficients used to approximate the baseline hazard.
A_tau_bs_gammas
the prior shape parameter of the gamma prior for the
precision parameter of the penalty term for the B-splines coefficients for
the baseline hazard.
B_tau_bs_gammas
the prior rate parameter of the gamma prior for the
precision parameter of the penalty term for the B-splines coefficients for
the baseline hazard.
rank_Tau_bs_gammas
the prior rank parameter for the precision matrix of the normal prior for the B-splines coefficients used to approximate the baseline hazard.
mean_gammas
the prior mean vector of the normal prior for the regression
coefficients of baseline covariates.
Tau_gammas
the prior precision matrix of the normal prior for the regression
coefficients of baseline covariates.
penalty_gammas
a character string with value 'none', 'ridge', or 'horseshoe' indicating whether the coefficients of the baseline covariates included in the survival submodel should not be shrunk, shrank using ridge prior, or shrank using horseshoe prior, respectively.
A_lambda_gammas
the prior shape parameter of the gamma prior for the
precision parameter of the local penalty term for the baseline regression coefficients. Only relevant when penalty_gammas = 'ridge' or when penalty_gammas = 'horseshoe'.
B_lambda_gammas
the prior rate parameter of the gamma prior for the
precision parameter of the local penalty term for the baseline regression coefficients. Only relevant when penalty_gammas = 'ridge' or when penalty_gammas = 'horseshoe'.
A_tau_gammas
the prior shape parameter of the gamma prior for the
precision parameter of the global penalty term for the baseline regression coefficients. Only relevant when penalty_gammas = 'ridge' or when penalty_gammas = 'horseshoe'.
B_tau_gammas
the prior rate parameter of the gamma prior for the
precision parameter of the global penalty term for the baseline regression coefficients. Only relevant when penalty_gammas = 'ridge' or when penalty_gammas = 'horseshoe'.
A_nu_gammas
the prior shape parameter of the gamma prior for the variance hyperparameter for the precision parameter of the local penalty term for the baseline regression coefficients. Only relevant when penalty_gammas = 'ridge' or when penalty_gammas = 'horseshoe'.
B_nu_gammas
the prior rate parameter of the gamma prior for the variance hyperparameter for the precision parameter of the local penalty term for the baseline regression coefficients. Only relevant when penalty_gammas = 'ridge' or when penalty_gammas = 'horseshoe'.
A_xi_gammas
the prior shape parameter of the gamma prior for the variance hyperparameter for the precision parameter of the global penalty term for the baseline regression coefficients. Only relevant when penalty_gammas = 'ridge' or when penalty_gammas = 'horseshoe'.
B_xi_gammas
the prior rate parameter of the gamma prior for the variance hyperparameter for the precision parameter of the global penalty term for the baseline regression coefficients. Only relevant when penalty_gammas = 'ridge' or when penalty_gammas = 'horseshoe'.
mean_alphas
the prior mean vector of the normal prior for the association
parameter(s).
Tau_alphas
the prior mean vector of the normal prior for the association
parameter(s).
penalty_alphas
a character string with value 'none', 'ridge', 'horseshoe' indicating whether the coefficients association parameters should not be shrunk, shrank using ridge prior, or shrank using horseshoe prior, respectively.
A_lambda_alphas
the prior shape parameter of the gamma prior for the
precision parameter of the local penalty term for the association parameters. Only relevant when penalty_gammas = 'ridge' or when penalty_gammas = 'horseshoe'.
B_lambda_alphas
the prior rate parameter of the gamma prior for the
precision parameter of the local penalty term for the association parameters. Only relevant when penalty_gammas = 'ridge' or when penalty_gammas = 'horseshoe'.
A_tau_alphas
the prior shape parameter of the gamma prior for the
precision parameter of the global penalty term for the association parameters. Only relevant when penalty_gammas = 'ridge' or when penalty_gammas = 'horseshoe'.
B_tau_alphas
the prior rate parameter of the gamma prior for the
precision parameter of the global penalty term for the association parameters. Only relevant when penalty_gammas = 'ridge' or penalty_gammas = 'horseshoe'.
A_nu_alphas
the prior shape parameter of the gamma prior for the variance hyperparameter for the precision parameter of the local penalty term for the association parameters. Only relevant when penalty_gammas = 'ridge', or penalty_gammas = 'horseshoe'.
B_nu_alphas
the prior rate parameter of the gamma prior for the variance hyperparameter for the precision parameter of the local penalty term for the association parameters. Only relevant when penalty_gammas = 'ridge' or when penalty_gammas = 'horseshoe'.
A_xi_alphas
the prior shape parameter of the gamma prior for the variance hyperparameter for the precision parameter of the global penalty term for the association parameters. Only relevant when penalty_gammas = 'ridge' or when penalty_gammas = 'horseshoe'.
B_xi_alphas
the prior rate parameter of the gamma prior for the variance hyperparameter for the precision parameter of the global penalty term for the association parameters. Only relevant when penalty_gammas = 'ridge' or when penalty_gammas = 'horseshoe'.
gamma_prior_D_sds
logical; if TRUE, a gamma prior will be used for the standard deviations of the D matrix (variance-covariance matrix of the random effects). Defaults to TRUE
D_sds_df
the prior degrees of freedom parameter for the half-t prior for the standard deviations of the D matrix (variance-covariance matrix of the random effects).
D_sds_sigma
the prior sigma parameter vector for the half-t prior for the standard deviations of the D matrix (variance-covariance matrix of the random effects).
D_sds_shape
the prior shape parameter for the gamma prior for the standard deviations of the D matrix (variance-covariance matrix of the random effects).
D_sds_mean
the prior mean parameter vector for the gamma prior for the standard deviations of the D matrix (variance-covariance matrix of the random effects).
D_L_etaLKJ
the prior eta parameter for the LKJ prior for the correlation matrix of the random effects.
sigmas_df
the prior degrees of freedom parameter for the half-t prior for the error term(s).
sigmas_sigma
the prior sigma parameter for the half-t prior for the error term(s).