Learn R Programming

JMcmprsk (version 0.9.6)

SimDataO: Data simulation of ordinal outcomes and competing risks

Description

Simulation of ordinal longitudinal outcome and competing risks data Currently, only the simulation in Li et al(2010) is implemented.

Usage

SimDataO(k_val, p1_val, p1a_val, p2_val, g_val, truebeta, truetheta,
  truegamma, randeffect, yfn, cfn, mfn)

Arguments

k_val

The number of subjects in study.

p1_val

The dimension of fixed effects in longitudinal measurements.

p1a_val

The dimension of random effects in longitudinal measurements.

p2_val

The dimension of fixed effects in competing risks failure time data.

g_val

The number of type of failure in competing risks data.

truebeta

True values for beta, the longitudinal coefficients.

truetheta

True values for theta, subset of the non-proportional odds longitudinal coefficients.

truegamma

True values for gamma, the survival coefficients.

randeffect

True values for random effects in longitudinal and competing risks parts,namely in the order of \(\sigma_b\),\(\nu_2\),\(\sigma_u\).

yfn

Filename of genereated Y matrix for longitudinal measurements in long format.

cfn

Filename of genereated C matrix for competing risks failure time data.

mfn

Filename of genereated M vector to indicate the number of longitudinal measurements per subject.

Value

Files with names yfn, cfn and mfn.

References

  • Ning Li,Robert M. Elashoff,Gang Li and Jeffrey Saver. "Joint modeling of longitudinal ordinal data and competing risks survival times and analysis of the NINDS rt-PA stroke trial." Statistics in medicine 29.5 (2010): 546-557.

See Also

SimDataC

Examples

Run this code
# NOT RUN {
# A toy example testint data generations
require(JMcmprsk)
set.seed(123)
yfn=tempfile(pattern = "", fileext = ".txt")
cfn=tempfile(pattern = "", fileext = ".txt")
mfn=tempfile(pattern = "", fileext = ".txt")
 k_val=50;p1_val=3;p1a_val=1; p2_val=2;g_val=2;
truebeta=c(-1,1.5,0.8);truetheta=c(-0.5,1);truegamma=c(0.8,-1,0.5,-1); randeffect=c(1,0.5,0.5);
#writing files
SimDataO(k_val, p1_val, p1a_val, p2_val, g_val,
      truebeta, truetheta, truegamma, randeffect, yfn,  cfn,  mfn)
# }
# NOT RUN {
jmo(p=3,s=1, yfn,cfn,mfn,point=10,do.trace = TRUE)
# }

Run the code above in your browser using DataLab