# NOT RUN {
require(tidyverse)
yfile = system.file("extdata", "ninds_nrank_y.txt", package = "JMcmprsk")
cfile = system.file("extdata", "ninds_nrank_c.txt", package = "JMcmprsk")
mfile = system.file("extdata", "ninds_nrank_m.txt", package = "JMcmprsk")
yread = read.table(yfile, header = TRUE)
cread = read.table(cfile, header = TRUE)
mread = read.table(mfile)
# make a raw yread: this is a dataset like what users usually have
yread <- yread[, -c(2:4)]
# create an ID column for each subject and add it to yread
ID <- vector()
for (i in 1:nrow(mread)) {
ID <- c(ID, replicate(mread[i, 1], i))
}
yread <- data.frame(ID, yread)
ID <- c(1:nrow(cread))
#Create two categorical variables and add them into yread
set.seed(100)
sex <- sample(c("Feamle", "Male"), nrow(mread), replace = T)
race <- sample(c("White", "Black", "Asian", "Hispanic"), nrow(mread), replace = T)
cate_var <- data.frame(ID, sex, race)
yread <- left_join(yread, cate_var, by = "ID")
# run jmo_long function again for yread file with two added categorical variables
res1 <- jmo_long(yread, cread, out = "Y",
FE = c("group", "time3", "time6", "time12", "mrkprior",
"smlves", "lvORcs", "smlves.group", "lvORcs.group"), cate = c("sex", "race"),
RE = "intercept", NP = c("smlves", "lvORcs", "sex", "race"), ID = "ID",intcpt = 1,
quad.points = 12, max.iter = 1000, quiet = FALSE)
# }
Run the code above in your browser using DataLab