Learn R Programming

Johnson (version 1.4)

Johnson-package: Johnson transformation

Description

Johnson transforms to normality using the Z family of distributions. It performs the Johnson Transformation based on the method of the percentiles. It includes the Anderson-Darling Test.

Arguments

Details

The values of the Johnson Transformation Function can be obtained
Package:
Johnson
Type:
Package
Version:
1.3
Date:
2012-08-06
License:
What license is it under?
LazyLoad:
yes

References

Chou, Youn Min; Polansky, A. M. M. R. L. (1998), "Transforming non normal data to normality in statistical process control", Journal of Quality Technology 30, 2, April.

Johnson, N. L. (1949), "Systems of Frequency Curves Generated by Methods of Translation". URL: http://www.jstor.org/stable/2332539

Slifker, J. F. & Shapiro, S. S. (1980), "The johnson system: selection and parameter estimation", Technometrics 22(2).

Trujillo-Ortiz, A., R. H.-W. K. B.-R. & Castro-Perez., A.(2007), "Andartest:anderson-darling test for assessing normality of a sample data.". URL: http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=14807

See Also

Examples

Run this code
# transforming to normality a random sample with beta distribution
x <- rbeta(30,2,3)
y <- RE.Johnson(x); print(y)

# working with the transformed variable
x <- runif(100)
y <- RE.Johnson(x) $ transformed; print(y)

# working with the p-values
x <- rgamma(100,2,1)
y <- RE.Johnson(x)$p; print(y)

Run the code above in your browser using DataLab