Learn R Programming

JointAI (version 0.1.0)

default_hyperpars: Get default values for hyperparameters Prints the list of default values for the hyperparameters

Description

Get default values for hyperparameters Prints the list of default values for the hyperparameters

Usage

default_hyperpars(family = "gaussian", link = "identity", nranef = NULL)

Arguments

family

distribution family of the analysis model (gaussian, binomial, poisson or Gamma)

link

link function (if the link is already given in the family, e.g. family = binomial("logit")) this argument does not need to be specified

nranef

number of random effects

Value

A list containing the default hyperparameters for JointAI models. The elements of the list are

analysis_model: hyperparameters for the analysis model

mu_reg_main mean in the priors for regression coefficients
tau_reg_main precision in the priors for regression coefficients
a_tau_main scale parameter in gamma prior for precision of outcome
b_tau_main rate parameter in gamma prior for precision of outcome

Z: hyperparameters for the random effects in mixed models

RinvD scale matrix in Wishart prior (*) for random effects covariance matrix
KinvD degrees of freedom in Wishart prior for random effects covariance matrix
a_diag_RinvD scale parameter in gamma prior for the diagonal elements of RinvD
b_diag_RinvD rate parameter in gamma prior for the diagonal elements of RinvD

(*) when there is only one random effect a gamma distribution is used instead of the Wishart

norm: hyperparameters for normal and lognormal imputation models

mu_reg_norm mean in the priors for regression coefficients
tau_reg_norm precision in the priors for regression coefficients
a_tau_norm scale parameter in gamma prior for precision of imputed variable
b_tau_norm rate parameter in gamma prior for precision of imputed variable

logit: hyperparameters for logistic imputation models

mu_reg_logit mean in the priors for regression coefficients
tau_reg_logit precision in the priors for regression coefficients

multinomial: hyperparameters for multinomial imputation models

mu_reg_multinomial mean in the priors for regression coefficients
tau_reg_multinomial precision in the priors for regression coefficients

ordinal: hyperparameters for ordinal imputation models

mu_reg_ordinal mean in the priors for regression coefficients
tau_reg_ordinal precision in the priors for regression coefficients
mu_delta_ordinal mean in the prior for the intercepts
tau_delta_ordinal precision in the priors for the intercepts