This function returns a list of default values for the hyperparameters.
default_hyperpars()
norm: hyperparameters for normal and lognormal models
mu_reg_norm |
mean in the priors for regression coefficients |
tau_reg_norm |
precision in the priors for regression coefficients |
shape_tau_norm |
shape parameter in Gamma prior for precision of an imputed variable |
gamma: hyperparameters for Gamma models
mu_reg_gamma |
mean in the priors for regression coefficients |
tau_reg_gamma |
precision in the priors for regression coefficients |
shape_tau_gamma |
shape parameter in Gamma prior for precision of an imputed variable |
beta: hyperparameters for beta models
mu_reg_beta |
mean in the priors for regression coefficients |
tau_reg_beta |
precision in the priors for regression coefficients |
shape_tau_beta |
shape parameter in Gamma prior for precision of imputed variable |
logit: hyperparameters for logistic models
mu_reg_logit |
mean in the priors for regression coefficients |
probit: hyperparameters for probit models
mu_reg_logit |
mean in the priors for regression coefficients |
multinomial: hyperparameters for multinomial models
mu_reg_multinomial |
mean in the priors for regression coefficients |
ordinal: hyperparameters for ordinal models
mu_reg_ordinal |
mean in the priors for regression coefficients |
tau_reg_ordinal |
precision in the priors for regression coefficients |
mu_delta_ordinal |
mean in the prior for the intercepts |
Z: function creating hyperparameters for the random effects in mixed models, with output elements
RinvD |
scale matrix in Wishart prior (*) for random effects covariance matrix |
KinvD |
degrees of freedom in Wishart prior for random effects covariance matrix |
shape_diag_RinvD |
shape parameter in Gamma prior for the diagonal elements of RinvD |
(*) when there is only one random effect a Gamma distribution is used instead
of the Wishart and RinvD
and KinvD
are NULL
surv: parameters for survival models (parametric and proportional hazard)
mu_reg_surv |
mean in the priors for regression coefficients |
coxph: parameters for Cox proportional hazards models
c confidence in prior guess for the hazard function |
|
r failure rate per unit time |
# NOT RUN {
default_hyperpars()
# To change the hyperparameters:
hyp <- default_hyperpars()
hyp$norm['rate_tau_norm'] <- 1e-3
mod <- lm_imp(y ~ C1 + C2 + B1, data = wideDF, hyperpars = hyp, mess = FALSE)
# }
Run the code above in your browser using DataLab