Obtain and print the summary
, (fixed effects) coefficients (coef
)
and credible interval (confint
) for an object of class 'JointAI'.
# S3 method for JointAI
summary(
object,
start = NULL,
end = NULL,
thin = NULL,
quantiles = c(0.025, 0.975),
subset = NULL,
exclude_chains = NULL,
warn = TRUE,
mess = TRUE,
...
)# S3 method for summary.JointAI
print(x, digits = max(3, .Options$digits - 4), ...)
# S3 method for JointAI
coef(
object,
start = NULL,
end = NULL,
thin = NULL,
subset = NULL,
exclude_chains = NULL,
warn = TRUE,
mess = TRUE,
...
)
# S3 method for JointAI
confint(
object,
parm = NULL,
level = 0.95,
quantiles = NULL,
start = NULL,
end = NULL,
thin = NULL,
subset = NULL,
exclude_chains = NULL,
warn = TRUE,
mess = TRUE,
...
)
# S3 method for JointAI
print(x, digits = max(4, getOption("digits") - 4), ...)
object inheriting from class 'JointAI'
the first iteration of interest (see window.mcmc
)
the last iteration of interest (see window.mcmc
)
thinning interval (see window.mcmc
)
posterior quantiles
subset of parameters/variables/nodes (columns in the MCMC sample).
Uses the same logic as the argument monitor_params
in
*_imp
.
optional vector of the index numbers of chains that should be excluded
logical; should warnings be given? Default is
TRUE
. (Note: this applies only to warnings
given directly by JointAI.)
logical; should messages be given? Default is
TRUE
. (Note: this applies only to messages
given directly by JointAI.)
currently not used
an object of class summary.JointAI
or JointAI
minimal number of significant digits, see
print.default
.
same as subset
confidence level (default is 0.95)
The model fitting functions lm_imp
,
glm_imp
, clm_imp
, lme_imp
,
glme_imp
, survreg_imp
and coxph_imp
,
and the vignette
Parameter Selection
for examples how to specify the parameter subset
.
# NOT RUN {
mod1 <- lm_imp(y ~ C1 + C2 + M2, data = wideDF, n.iter = 100)
summary(mod1)
coef(mod1)
confint(mod1)
# }
Run the code above in your browser using DataLab