
Last chance! 50% off unlimited learning
Sale ends in
This function prints information on all models, those explicitly specified by the user and those specified automatically by JointAI for (incomplete) covariates in a JointAI object.
list_models(object, predvars = TRUE, regcoef = TRUE, otherpars = TRUE,
priors = TRUE, refcat = TRUE)
object inheriting from class 'JointAI'
logical; should information on the predictor variables be
printed? (default is TRUE
)
logical; should information on the regression coefficients
be printed? (default is TRUE
)
logical; should information on other parameters be printed?
(default is TRUE
)
logical; should information on the priors
(and hyper-parameters) be printed? (default is TRUE
)
logical; should information on the reference category be
printed? (default is TRUE
)
Erler, N.S., Rizopoulos, D., Rosmalen, J.V., Jaddoe, V.W., Franco, O.H., & Lesaffre, E.M.E.H. (2016). Dealing with missing covariates in epidemiologic studies: A comparison between multiple imputation and a full Bayesian approach. Statistics in Medicine, 35(17), 2955-2974.
Erler NS, Rizopoulos D, Lesaffre EMEH (2021). "JointAI: Joint Analysis and Imputation of Incomplete Data in R." Journal of Statistical Software, 100(20), 1-56. tools:::Rd_expr_doi("10.18637/jss.v100.i20").
# (set n.adapt = 0 and n.iter = 0 to prevent MCMC sampling to save time)
mod1 <- lm_imp(y ~ C1 + C2 + M2 + O2 + B2, data = wideDF, n.adapt = 0,
n.iter = 0, mess = FALSE)
list_models(mod1)
Run the code above in your browser using DataLab