Last chance! 50% off unlimited learning
Sale ends in
pred.jplm.cumhaz(object, at=NULL, CI=FALSE)
jplm
.TRUE
, a 95% pointwise confidence interval is returned. CI=FALSE
, it returns a numeric vector of predicted cumulative hazard values at at=
. If CI=TRUE
, it returns a numeric vector of predicted cumulative hazard values, the standard error estimate of the predicted value, and its lower and upper 95% pointwise confidence interval.
jplm
# a simulated data set of longitudinal responses
attach(prostate)
# a simulated data set of drop-out process (or, time-to-event)
attach(dropout)
# joint fit of a partially linear model and a proportional odds model
# with a subject-specific random intercept and random slope
fit1 <- jplm(logPSA.postRT ~ logPSA.base + (1 + VisitTime|ID),
nlm.par=prostate$VisitTime, data.y=prostate,
Surv(DropTime, Status) ~ logPSA.base2,
formula.frailty= ~ 1 + DropTime,
id.vec=dropout$ID2, transf.par=1, data.surv=dropout)
# Evaluate at 20,...,80 percent of the maximum observed survival time
pts <- c(0.2, 0.4, 0.6, 0.8)*max(dropout$DropTime)
pred.jplm.cumhaz(fit1, at=pts)
out <- pred.jplm.cumhaz(fit1, at=pts, CI=TRUE)
out$Value
Run the code above in your browser using DataLab