Learn R Programming

KCsmart (version 2.30.0)

KCsmart-package: KCsmart

Description

Multiple sample aCGH analysis using kernel convolution

Arguments

Details

Package:
KCsmart
Type:
Package
Version:
2.9.1
Date:
2011-02-21
License:
GPL
Use the wrapper function 'calcSpm' to calculate the sample point matrix. Use 'findSigLevelTrad' to find a significance threshold using permutation based testing. Use 'plot' to plot the sample point matrix or 'plotScaleSpace' to plot the significant regions over multiple scales (sigmas). Use 'getSigSegments' to retrieve the significantly gained and lost regions using specific cutoffs. To use the comparative version of KCsmart, use the 'calcSpmCollection', 'compareSpmCollection' and 'getSigRegionsCompKC' functions. See the documentation of those function for details on how to use these.

References

Identification of cancer genes using a statistical framework for multiexperiment analysis of nondiscretized array CGH data. Nucleic Acids Res. 2008 Feb;36(2):e13.

See Also

calcSpm, findSigLevelTrad, findSigLevelFdr, plot, plotScaleSpace, getSigSegments

Examples

Run this code
data(hsSampleData)
data(hsMirrorLocs)

spm1mb <- calcSpm(hsSampleData, hsMirrorLocs)
spm4mb <- calcSpm(hsSampleData, hsMirrorLocs, sigma=4000000)

plot(spm1mb)
plot(spm1mb, chromosomes=c(1,5,6,'X'))

siglevel1mb <- findSigLevelTrad(hsSampleData, spm1mb, n=3)
siglevel4mb <- findSigLevelTrad(hsSampleData, spm4mb, n=3)

plot(spm1mb, sigLevel=siglevel1mb)

plotScaleSpace(list(spm1mb, spm4mb), list(siglevel1mb, siglevel4mb), type='g')

sigSegments1mb <- getSigSegments(spm1mb, siglevel1mb)


spmc1mb <- calcSpmCollection(hsSampleData, hsMirrorLocs, cl=c(rep(0,10),rep(1,10)))
spmcc1mb <- compareSpmCollection(spmc1mb, nperms=3)
spmcc1mbSigRegions <- getSigRegionsCompKC(spmcc1mb)

plot(spmcc1mb, sigRegions=spmcc1mbSigRegions)


Run the code above in your browser using DataLab