Learn R Programming

KCsmart (version 2.30.0)

compareSpmCollection: KCsmart Comparative calculate null distribution

Description

Compare the samples of one class in the sample point matrix collection to the samples in the other class and calculate the null distribution

Usage

compareSpmCollection(spmCollection, nperms=20, method=c("siggenes", "perm"), siggenes.args=NULL, altcl=NULL)

Arguments

spmCollection
An spmCollection object as created by the 'calcSpmCollection' function
nperms
The number of permutations to be used to calculate the null distribution
altcl
Instead of using the class vector from the spmCollection object an alternative vector can be used
method
The method to be used to calculate the null distribution
siggenes.args
Optional additional arguments to the siggenes function

Value

Returns a compKc object which returns the original data and, depending on the method used, the permuted data or the fdr-delta value combinations as calculated by the siggenes package.

Details

The method to be used to determine significant regions can either be the SAM methodology from the siggenes package or a signal-to-noise/permutation based method. For more information regarding the siggenes method please check the corresponding package.

See Also

compareSpmCollection, getSigRegionsCompKC

Examples

Run this code
data(hsSampleData)
data(hsMirrorLocs)

spmc1mb <- calcSpmCollection(hsSampleData, hsMirrorLocs, cl=c(rep(0,10),rep(1,10)))
spmcc1mb <- compareSpmCollection(spmc1mb, nperms=3)
spmcc1mbSigRegions <- getSigRegionsCompKC(spmcc1mb)

plot(spmcc1mb, sigRegions=spmcc1mbSigRegions)

Run the code above in your browser using DataLab