Function importanceSSM
simulates states or signals of the exponential
family state space model conditioned with the observations, returning the
simulated samples of the states/signals with the corresponding importance
weights.
importanceSSM(model, type = c("states", "signals"), filtered = FALSE,
nsim = 1000, save.model = FALSE, theta, antithetics = FALSE,
maxiter = 50)
Exponential family state space model of class SSModel
.
What to simulate, "states"
or "signals"
. Default is
"states"
Simulate from
Number of independent samples. Default is 1000.
Return the original model with the samples. Default is FALSE.
Initial values for the conditional mode theta.
Logical. If TRUE, two antithetic variables are used in simulations, one for location and another for scale. Default is FALSE.
Maximum number of iterations used in linearisation. Default is 50.
A list containing elements
Simulated samples.
Importance weights.
Original model in case of save.model==TRUE
.
Function can use two antithetic variables, one for location and other for scale, so output contains four blocks of simulated values which correlate which each other (ith block correlates negatively with (i+1)th block, and positively with (i+2)th block etc.).
# NOT RUN {
data("sexratio")
model <- SSModel(Male ~ SSMtrend(1, Q = list(NA)), u = sexratio[,"Total"], data = sexratio,
distribution = "binomial")
fit <- fitSSM(model, inits = -15, method = "BFGS")
fit$model$Q #1.107652e-06
# Computing confidence intervals for sex ratio
# Uses importance sampling on response scale (1000 samples with antithetics)
set.seed(1)
imp <- importanceSSM(fit$model, nsim = 250, antithetics = TRUE)
sexratio.smooth <- numeric(length(model$y))
sexratio.ci <- matrix(0, length(model$y), 2)
w <- imp$w/sum(imp$w)
for(i in 1:length(model$y)){
sexr <- exp(imp$sample[i,1,])
sexratio.smooth[i]<-sum(sexr*w)
oo <- order(sexr)
sexratio.ci[i,] <- c(sexr[oo][which.min(abs(cumsum(w[oo]) - 0.05))],
sexr[oo][which.min(abs(cumsum(w[oo]) - 0.95))])
}
# }
# NOT RUN {
# Filtered estimates
impf <- importanceSSM(fit$model, nsim = 250, antithetics = TRUE,filtered=TRUE)
sexratio.filter <- rep(NA,length(model$y))
sexratio.fci <- matrix(NA, length(model$y), 2)
w <- impf$w/rowSums(impf$w)
for(i in 2:length(model$y)){
sexr <- exp(impf$sample[i,1,])
sexratio.filter[i] <- sum(sexr*w[i,])
oo<-order(sexr)
sexratio.fci[i,] <- c(sexr[oo][which.min(abs(cumsum(w[i,oo]) - 0.05))],
sexr[oo][which.min(abs(cumsum(w[i,oo]) - 0.95))])
}
ts.plot(cbind(sexratio.smooth,sexratio.ci,sexratio.filter,sexratio.fci),
col=c(1,1,1,2,2,2),lty=c(1,2,2,1,2,2))
# }
Run the code above in your browser using DataLab