Learn R Programming

KODAMA

A self-guided, weakly supervised learning algorithm for feature extraction from noisy and high-dimensional data. The method facilitates the identification of patterns that reflect underlying group structures across all samples in a dataset. It incorporates a novel strategy to integrate spatial information, enhancing the interpretability of results in spatially resolved data.

Citation

Abdel-Shafy EA, Kassim M, Vignol A, et al. (2025). KODAMA enables self-guided weakly supervised learning in spatial transcriptomics. BioRxiv 2025.

Cacciatore S, Tenori L, Luchinat C, Bennett PR, MacIntyre DA. (2017). KODAMA: an R package for knowledge discovery and data mining. Bioinformatics, 33(4), 621-623.

Cacciatore S, Luchinat C, Tenori L. (2014). Knowledge discovery by accuracy maximization. Proceedings of the National Academy of Sciences, 111(14), 5117-5122.

Installation

This third version of KODAMA will be available soon on https://CRAN.R-project.org/package=KODAMA.

library(devtools)
install_github("tkcaccia/KODAMA")

Copy Link

Version

Install

install.packages('KODAMA')

Monthly Downloads

748

Version

3.0

License

GPL (>= 2)

Maintainer

Stefano Cacciatore

Last Published

June 3rd, 2025

Functions in KODAMA (3.0)

scaling

Scaling Methods
mcplot

Evaluation of the Monte Carlo accuracy results
spirals

Spirals Data Set Generator
kabsch

Kabsch Algorithm
tsne.defaults

Default configuration for Rtsne
lymphoma

Lymphoma Gene Expression Dataset
umap.defaults

Default configuration for umap
core_cpp

Maximization of Cross-Validateed Accuracy Methods
KODAMA.matrix

Knowledge Discovery by Accuracy Maximization
grid-internal

Internal Grid Functions
floyd

Find Shortest Paths Between All Nodes in a Graph
KODAMA.visualization

Visualization of KODAMA output
dinisurface

Ulisse Dini Data Set Generator
MetRef

Nuclear Magnetic Resonance Spectra of Urine Samples
MDS.defaults

Default configuration for RMDS
helicoid

Helicoid Data Set Generator
USA

State of the Union Data Set
swissroll

Swiss Roll Data Set Generator
pca

Principal Components Analysis
transformy

Conversion Classification Vector to Matrix
normalization

Normalization Methods