EM_REML_MM estimates the components and variance parameters of the following mixed model; Y =X*Beta + Z*U + E, using the EM-REML algorithm.
EM_REML_MM( Mat_K_inv, Y, X, Z, init_sigma2K,
init_sigma2E, convergence_precision,
nb_iter, display )
numeric matrix; the inverse of the kernel matrix
numeric vector; response vector
numeric matrix; design matrix of predictors with fixed effects
numeric matrix; design matrix of predictors with random effects
numeric scalars; initial guess values, associated to the mixed model variance parameters, for the EM-REML algorithm
convergence precision (i.e. tolerance) associated to the mixed model variance parameters, for the EM-REML algorithm, and number of maximum iterations allowed if convergence is not reached
boolean (TRUE or FALSE character string); should estimated components be displayed at each iteration
Estimated fixed effect(s)
Estimated variance components
Foulley, J.-L. (2002). Algorithme em: th<U+00E9>orie et application au mod<U+00E8>le mixte. Journal de la Soci<U+00E9>t<U+00E9> fran<U+00E7>aise de Statistique 143, 57-109