library(KRMM)
### SIMULATE DATA
set.seed(123)
p=200
N=100
beta=rnorm(p, mean=0, sd=1.0)
X=matrix(runif(p*N, min=0, max=1), ncol=p, byrow=TRUE) #X: covariates (i.e. predictors)
f=X%*%beta #f: data generating process (i.e. DGP)
E=rnorm(N, mean=0, sd=0.5)
Y=f+E #Y: observed response data
hist(f)
hist(beta)
Nb_train=floor((2/3)*N)
###======================================================================###
### CREATE TRAINING AND TARGET SETS FOR RESPONSE AND PREDICTOR VARIABLES ###
###======================================================================###
Index_train=sample(1:N, size=Nb_train, replace=FALSE)
### Covariates (i.e. predictors) for training and target sets
Predictors_train=X[Index_train, ]
Response_train=Y[Index_train]
Predictors_target=X[-Index_train, ]
True_value_target=f[-Index_train] #True value (generated by DGP) we want to predict
###=================================================================================###
### PREDICTION WITH KERNEL RIDGE REGRESSION SOLVED WITHIN THE MIXED MODEL FRAMEWORK ###
###=================================================================================###
Gaussian_KRR_model_train = Kernel_Ridge_MM( Y_train=Response_train,
Matrix_covariates_train=Predictors_train, method="RKHS", rate_decay_kernel=5.0)
### Predict new entries for target set and measure prediction error
f_hat_target_Gaussian_KRR = Predict_kernel_Ridge_MM( Gaussian_KRR_model_train,
Matrix_covariates_target=Predictors_target )
plot(f_hat_target_Gaussian_KRR, True_value_target)
Run the code above in your browser using DataLab