The incomplete Cholesky decomposition, which computes approximative low rank decompositions for either Gaussian or Hermite kernel matrices. Its implementation is inspired by Matlab and C code of F. Bach (see references) and written with the C++ library Eigen3 for speed purposes.
incomplete_cholesky(
x,
kernel = c("gauss", "hermite"),
eps = 1e-04,
sigma = ifelse(length(x) < 1000, 1, 0.5),
hermite_rank = 3
)
Numeric vector.
One of "gauss"
or "hermite"
.
Numeric precision parameter for the matrix approximation.
Numeric value, setting the kernel variance. Default is 1 for vectors smaller than n=1000, otherwise 0.5.
Integer value for the rank of the Hermite kernel. This parameter is ignored, when the Gaussian kernel is chosen. Default is 3.
A list containing the following entries:
A numeric matrix which values
An integer vector of indeces representing the permutation matrix.
The function approximates kernel matrices of the form
Gaussian Kernel:
Hermite Kernel:
Kernel ICA implementation in Matlab and C by F. Bach containing the Incomplete Cholesky Decomposition: https://www.di.ens.fr/~fbach/kernel-ica/index.htm
Francis R. Bach, Michael I. Jordan Predictive low-rank decomposition for kernel methods. Proceedings of the Twenty-second International Conference on Machine Learning (ICML) 2005 10.1145/1102351.1102356.
Francis R. Bach, Michael I. Jordan Kernel independent component analysis Journal of Machine Learning Research 2002 10.1162/153244303768966085
# NOT RUN {
# approximation of a Gaussian kernel matrix
x <- rnorm(500)
x_kernel_mat <- kernel_matrix(x, sigma = 1)
x_chol <- incomplete_cholesky(x, sigma = 1)
L_perm <- x_chol$L[x_chol$perm, ]
x_kernel_approx <- L_perm %*% t(L_perm)
## largest differing value:
max(abs(x_kernel_approx - x_kernel_mat))
# approximation of a Hermite kernel matrix
x_kernel_mat <- kernel_matrix(x, kernel = "hermite", sigma = 0.5)
x_chol <- incomplete_cholesky(x, kernel = "hermite", sigma = 0.5)
L_perm <- x_chol$L[x_chol$perm, ]
x_kernel_approx <- L_perm %*% t(L_perm)
## largest differing value:
max(abs(x_kernel_approx - x_kernel_mat))
# }
Run the code above in your browser using DataLab