data(iris) # data set
data <- iris
names <- colnames(data)
colnames(data) <- c(names[1:4],"class")
#### Start - hold out validation method ####
dat.sample = sample(2, nrow(data), replace = TRUE, prob = c(0.7,0.3))
data.train = data[dat.sample == 1,] # training data set
data.test = data[dat.sample == 2,] # test data set
class.train = as.factor(data.train$class) # class names of the training data set
class.test = as.factor(data.test$class) # class names of the test data set
#### End - hold out validation method ####
r <- (ncol(data) - 1)
res <- brute.force(func = "knn", train = data.train[,1:r],
test = data.test[,1:r], class.train = class.train,
class.test = class.test, args = "k = 1, dist = 'EUC'",
measure = "Rate Hits", output = 20)
res$best.model
res$text.model
res <- brute.force(func = "regression", train = data.train[,1:r],
test = data.test[,1:r], class.train = class.train,
class.test = class.test, args = "intercept = TRUE",
measure = "Rate Hits", output = 20)
res$best.model
res$text.model
test_a <- as.integer(rownames(data.test)) # test data index
class <- data[,c(r+1)] # classes names
res <- brute.force(func = "lda", train = data[,1:r], test = test_a,
class.train = class, class.test = class.test,
args = "type = 'test', method = 'mle'",
measure = "Rate Hits", output = 20)
res$best.model
res$text.model
Run the code above in your browser using DataLab