Learn R Programming

Kmedians (version 2.2.0)

K-Medians

Description

Online, Semi-online, and Offline K-medians algorithms are given. For both methods, the algorithms can be initialized randomly or with the help of a robust hierarchical clustering. The number of clusters can be selected with the help of a penalized criterion. We provide functions to provide robust clustering. Function gen_K() enables to generate a sample of data following a contaminated Gaussian mixture. Functions Kmedians() and Kmeans() consists in a K-median and a K-means algorithms while Kplot() enables to produce graph for both methods. Cardot, H., Cenac, P. and Zitt, P-A. (2013). "Efficient and fast estimation of the geometric median in Hilbert spaces with an averaged stochastic gradient algorithm". Bernoulli, 19, 18-43. . Cardot, H. and Godichon-Baggioni, A. (2017). "Fast Estimation of the Median Covariation Matrix with Application to Online Robust Principal Components Analysis". Test, 26(3), 461-480 . Godichon-Baggioni, A. and Surendran, S. "A penalized criterion for selecting the number of clusters for K-medians" Vardi, Y. and Zhang, C.-H. (2000). "The multivariate L1-median and associated data depth". Proc. Natl. Acad. Sci. USA, 97(4):1423-1426. .

Copy Link

Version

Install

install.packages('Kmedians')

Monthly Downloads

222

Version

2.2.0

License

GPL (>= 2)

Maintainer

Antoine Godichon-Baggioni

Last Published

December 18th, 2023

Functions in Kmedians (2.2.0)

Kmedians

Kmedians
gen_K

gen_K
Kplot

Kplot
Kmedians-package

tools:::Rd_package_title("Kmedians")
Kmeans

Kmeans