Learn R Programming

KnowGRRF (version 1.0)

write.roc: write test ROC to a data table.

Description

write a data table including False Positive Rate, True Positive Rate and cutoff on test dataset. Work for classification only.

Usage

write.roc(X.train, Y.train, X.test, Y.test, fea, file.name="")

Arguments

X.train

a data frame or matrix (like x) containing predictors for the training set.

Y.train

response for the training set. If a factor, classification is assumed, otherwise regression is assumed. If omitted, will run in unsupervised mode.

X.test

a data frame or matrix (like x) containing predictors for the test set.

Y.test

response for the test set.

fea

feature index or feature names used to train the model.

file.name

directory and name of files that write to. If directory is not given, will write to working directory.

Value

a data table in csv format which columns FPR, TPR and cutoff.

References

Guan, X., & Liu, L. (2018). Know-GRRF: Domain-Knowledge Informed Biomarker Discovery with Random Forests.

Examples

Run this code
# NOT RUN {
##---- Example: classification ----

set.seed(1)
X<-data.frame(matrix(rnorm(100*100), nrow=100))
b=seq(0.1, 2.2, 0.2) 
##y has a linear relationship with first 10 variables
y=b[7]*X$X6+b[8]*X$X7+b[9]*X$X8+b[10]*X$X9+b[11]*X$X10 
y=as.factor(ifelse(y>0, 1, 0)) ##classification

##split training and test set
X.train=X[1:70,]
X.test=X[71:100,]
y.train=y[1:70]
y.test=y[71:100]

##save to a temp file
write.roc(X.train, y.train, X.test, y.test, fea=1:20, paste(tempdir(), "example.csv", sep="/"))  

# }

Run the code above in your browser using DataLab