# NOT RUN {
#max_timse
set.seed(8)
N <- 9 #number of observations
T <- 80 #threshold
testfun <- branin
lower <- c(0,0)
upper <- c(1,1)
#a 9 points initial design
design <- data.frame( matrix(runif(2*N),ncol=2) )
response <- testfun(design)
#km object with matern3_2 covariance
#params estimated by ML from the observations
model <- km(formula=~., design = design,
response = response,covtype="matern3_2")
optimcontrol <- list(method="genoud",pop.size=50)
integcontrol <- list(distrib="timse",n.points=50,init.distrib="MC")
integration.param <- integration_design(integcontrol=integcontrol,d=2,
lower=lower,upper=upper,model=model,
T=T)
# }
# NOT RUN {
obj <- max_timse(lower=lower,upper=upper,optimcontrol=optimcontrol,T=T,
model=model,integration.param=integration.param)
obj$par;obj$value
new.model <- update_km(model=model,NewX=obj$par,NewY=testfun(obj$par),
CovReEstimate=TRUE)
par(mfrow=c(1,2))
print_uncertainty(model=model,T=T,type="pn",lower=lower,upper=upper,
cex.points=2.5,main="probability of excursion")
print_uncertainty(model=new.model,T=T,type="pn",lower=lower,upper=upper,
new.points=1,col.points.end="red",cex.points=2.5,
main="updated probability of excursion")
# }
Run the code above in your browser using DataLab