Learn R Programming

KrigInv (version 1.3.1)

print_uncertainty: Prints a measure of uncertainty for a function of any dimension.

Description

This function prints in the whole input domain the value of a given measure of uncertainty. Possible measures are "pn" (the probability of excursion) and measures specific to a sampling criterion: "sur", "timse" and "imse". This function can be used to print relevant outputs after having used the function EGI.

Usage

print_uncertainty(model, T, type = "pn", ...)

Arguments

model

Kriging model of km class.

T

Target value (scalar).

type

Type of uncertainty that the user wants to print. Possible values are "pn" (probability of excursion), or "sur", "imse", "timse", "vorob" if we print a measure of uncertainty corresponding to one criterion.

Other arguments of the function print_uncertainty_1d, 2d or nd.

Value

the integrated uncertainty

References

Bect J., Ginsbourger D., Li L., Picheny V., Vazquez E. (2010), Sequential design of computer experiments for the estimation of a probability of failure, Statistics and Computing, pp.1-21, 2011, http://arxiv.org/abs/1009.5177

See Also

EGI

Examples

Run this code
# NOT RUN {
#print_uncertainty

set.seed(8)
N <- 9 #number of observations
T <- 80 #threshold
testfun <- branin
lower <- c(0,0)
upper <- c(1,1)

#a 9 points initial design
design <- data.frame( matrix(runif(2*N),ncol=2) )
response <- testfun(design)

#km object with matern3_2 covariance
#params estimated by ML from the observations
model <- km(formula=~., design = design, 
	response = response,covtype="matern3_2")

#you could do many plots, but only one is run here
print_uncertainty(model=model,T=T,main="probability of excursion",type="pn")
#print_uncertainty(model=model,T=T,main="Vorob'ev uncertainty",type="vorob")
#print_uncertainty(model=model,T=T,main="imse uncertainty",type="imse")
#print_uncertainty(model=model,T=T,main="timse uncertainty",type="timse")
#print_uncertainty(model=model,T=T,main="sur uncertainty",type="sur")
#print_uncertainty(model=model,T=T,main="probability of excursion",type="pn",
#vorobmean=TRUE)
# }

Run the code above in your browser using DataLab