update_beta_MM_sparse updates beta for L2E sparse regression using the distance penalty
update_beta_MM_sparse(
y,
X,
beta,
tau,
k,
rho,
stepsize = 0.9,
sigma = 0.5,
max_iter = 100,
tol = 1e-04
)Returns a list object containing the new estimate for beta (vector) and the number of iterations (scalar) the update step utilized
Response vector
Design matrix
Initial vector of regression coefficients
Initial precision estimate
The number of nonzero entries in the estimated coefficients
The parameter in the proximal distance algorithm
The stepsize parameter for the MM algorithm (0, 1)
The halving parameter sigma (0, 1)
Maximum number of iterations
Relative tolerance