Generates structured, comprehensive summaries of objects produced by the LCPA package.
This generic function dispatches to class-specific methods that extract and organize key information
including model configurations, fit statistics, parameter estimates, simulation truths, and diagnostics.
Designed for programmatic access and downstream reporting.
# S3 method for LCA
summary(object, digits = 4, I.max = 5, ...)# S3 method for LPA
summary(object, digits = 4, I.max = 5, ...)
# S3 method for LTA
summary(object, digits = 4, I.max = 5, ...)
# S3 method for LCPA
summary(object, digits = 4, I.max = 5, ...)
# S3 method for sim.LCA
summary(object, digits = 4, I.max = 5, ...)
# S3 method for sim.LPA
summary(object, digits = 4, I.max = 5, ...)
# S3 method for sim.LTA
summary(object, digits = 4, I.max = 5, L.max = 5, ...)
# S3 method for fit.index
summary(object, digits = 4, ...)
# S3 method for compare.model
summary(object, digits = 4, ...)
# S3 method for SE
summary(object, ...)
Invisibly returns a structured list containing summary components.
The exact structure depends on the class of object. All returned objects carry an appropriate
S3 class (e.g., summary.LCA, summary.LPA) for use with corresponding print methods.
An object of one of the following classes:
Model objects: LCA, LPA,
LCPA, LTA
Simulation objects: sim.LCA, sim.LPA,
sim.LTA
Fit/comparison objects: get.fit.index, compare.model
Standard error objects: get.SE
Number of decimal places for numeric output (default: 4). Applied universally across all methods.
Maximum number of variables/items to display (LCA, LPA, sim.LCA, sim.LPA, sim.LTA,
LCPA, LTA, and compare.model only; default: 5). Controls verbosity for high-dimensional outputs.
Additional arguments passed to or from other methods (currently ignored).
Maximum number of latent classes/profiles to display before truncation (sim.LTA only; default: 5).
Useful when models have many latent groups. Ignored for other classes.
summary(LCA): Summary method for LCA objects
summary(LPA): Summary method for LPA objects
summary(LTA): Summary method for LTA objects
summary(LCPA): Summary method for LCPA objects
summary(sim.LCA): Summary method for sim.LCA objects
summary(sim.LPA): Summary method for sim.LPA objects
summary(sim.LTA): Summary method for sim.LTA objects
summary(fit.index): Summary method for fit.index objects
summary(compare.model): Summary method for compare.model objects
summary(SE): Summary method for summary.SE objects
Each method returns a named list with class-specific components optimized for structured access:
LCAReturns a summary.LCA object with components:
callOriginal function call.
model.configList: latent_classes, method.
data.infoList: N, I, poly.value, uniform_categories.
fit.statsList: LogLik, AIC, BIC, entropy, npar.
class.probsData frame: Class, Count, Proportion.
item.probsList of matrices (first I.max items) with conditional probabilities per class/category.
convergenceList: algorithm, iterations, tolerance, loglik change, hardware (if applicable).
replicationList: nrep, best_BIC (if multiple replications performed).
digits, I.max.shown, total.itemsMetadata for printing/formatting.
LPAReturns a summary.LPA object with components:
callOriginal function call.
model.configList: latent_profiles, constraint, cov_structure, method.
data.infoList: N, I, distribution.
fit.statsList: LogLik, AIC, BIC, entropy, npar.
class.probsData frame: Profile, Count, Proportion.
class.meansMatrix (first I.max variables) of profile-specific means.
convergenceList: algorithm, iterations, tolerance, loglik change, hardware (if applicable).
replicationList: nrep, best_BIC (if multiple replications performed).
digits, I.max.shown, total.varsMetadata for printing/formatting.
LCPAReturns a summary.LCPA object with components:
callOriginal function call.
model.configList: latent_classes, model_type, reference_class,
covariates_mode, CEP_handling.
data.infoList: sample_size, variables.
fit.statsList: LogLik, AIC, BIC, npar.
class.probsData frame: Class, Probability, Proportion, Frequency.
coefficientsData frame: regression coefficients for non-reference classes (Estimate, Std_Error, z_value, p_value, 95% CI).
reference_classInteger: reference class for multinomial logit.
convergenceList: iterations, coveraged, converg_note.
digits, I.max.shown, total.vars, has.covariatesMetadata for printing/formatting.
LTAReturns a summary.LTA object with components:
callOriginal function call.
model.configList: time_points, latent_classes, model_type,
reference_class, covariates_mode, CEP_handling, transition_mode.
data.infoList: sample_size, variables, time_points.
fit.statsList: LogLik, AIC, BIC, npar.
class.probsList of data frames (per time point): Class, Probability, Proportion, Frequency.
initial_modelList: coefficients (data frame), covariate_names, reference_class.
transition_modelsNamed list of data frames: transition coefficients per time interval (From_Class, To_Class, Estimate, Std_Error, etc.).
reference_classInteger: reference destination class for transitions.
convergenceList: iterations, coveraged, converg_note.
digits, I.max.shown, total.vars, covariates.timeCrossMetadata for printing/formatting.
sim.LCAReturns a summary.sim.LCA object with components:
callOriginal simulation call.
configList: N, I, L, poly.value, uniform_categories, IQ, distribution.
class.probsData frame: Class, Probability, Frequency.
item.probsList of matrices (first I.max items) with true conditional probabilities per class/category.
digits, I.max.shown, total.varsMetadata for printing/formatting.
sim.LPAReturns a summary.sim.LPA object with components:
callOriginal simulation call.
configList: N, I, L, constraint, constraint_desc, distribution.
class.probsData frame: Profile, Probability, Frequency.
class.meansMatrix (first I.max variables) of true profile-specific means.
cov_structureCharacter: detailed description of covariance constraints.
digits, I.max.shown, total.varsMetadata for printing/formatting.
sim.LTAReturns a summary.sim.LTA object with components:
callOriginal simulation call.
configList: N, I, L, times, type, distribution, constraint (if LPA).
class.probsList of data frames (per time point): Class, Probability, Frequency.
item.probsNested list (by time/item) of true conditional probabilities (if type="LCA").
class.meansList of matrices (by time) of true profile means (if type="LPA").
transitionList: mode ("fixed" or "covariate"), rate or beta/gamma coefficients, time_points.
covariatesList of data frames (per time point) with covariate summaries (Min, Max, Mean), if present.
digits, I.max.shown, L.max.shown, total.vars, total.classesMetadata for printing/formatting.
fit.indexReturns a summary.fit.index object with components:
callFunction call that generated the fit indices.
data.infoList: N.
fit.tableData frame: Statistic, Value, Description for -2LL, AIC, BIC, SIC, CAIC, AWE, SABIC.
digitsNumeric: precision used for formatting.
compare.modelReturns a summary.compare.model object with components:
callFunction call that generated the comparison.
data.infoList: N, I, L (named vector for two models).
fit.tableData frame comparing fit indices for both models.
model_comparisonData frame: Classes, npar, AvePP, Entropy.
BFNumeric: Bayes Factor value (if computed).
BF_interpretationCharacter: interpretive guidance for Bayes Factor.
lrt_tableData frame: Test, Statistic, DF, p-value, Sig (significance markers).
lrt_objectsList: raw hypothesis test objects for further inspection.
digitsNumeric: precision used for formatting.
SEReturns a summary.SE object with components:
callOriginal function call.
methodCharacter: "Obs" or "Bootstrap".
diagnosticsList: method-specific diagnostic info (e.g., n.Bootstrap, hessian_cond_number).
model_typeCharacter: "LCA" or "LPA".
LInteger: number of latent classes/profiles.
IInteger: number of variables/items (NA if unknown).
nonzero_countsList: counts of non-zero SEs by parameter type (P.Z, means/par, covs).
total_PZInteger: total number of class probability parameters.