# NOT RUN {
## Continuous example
train = example_3way(250, 2.5, seed=777)
# Forward search for genes based on BIC (in interactive mode)
forward_genes_BIC = stepwise_search(train$data, genes_extra=train$G, env_original=train$E,
formula=y ~ E*G*z,search_type="forward", search="genes", search_criterion="BIC",
interactive_mode=TRUE)
# Bidirectional-backward search for environments based on cross-validation error
bidir_backward_env_cv = stepwise_search(train$data, genes_original=train$G, env_original=train$E,
formula=y ~ E*G*z,search_type="bidirectional-backward", search="env", search_criterion="cv")
## Binary example
train_bin = example_2way(500, 2.5, logit=TRUE, seed=777)
# Forward search for genes based on cross-validated AUC (in interactive mode)
forward_genes_AUC = stepwise_search(train_bin$data, genes_extra=train_bin$G,
env_original=train_bin$E, formula=y ~ E*G,search_type="forward", search="genes",
search_criterion="cv_AUC", classification=TRUE, family=binomial, interactive_mode=TRUE)
# Forward search for genes based on AIC
bidir_forward_genes_AIC = stepwise_search(train_bin$data, genes_extra=train_bin$G,
env_original=train_bin$E, formula=y ~ E*G,search_type="bidirectional-forward", search="genes",
search_criterion="AIC", classification=TRUE, family=binomial)
# }
Run the code above in your browser using DataLab