Learn R Programming

LFM (version 0.3.2)

PC1: Apply the traditional principal component method to the Laplace factor model

Description

This function performs Principal Component Analysis (PCA) on a given data set to reduce dimensionality. It calculates the estimated values for the loadings, specific variances, and the covariance matrix.

Usage

PC1(data, m = m)

Value

Ahat, Dhat

Arguments

data

The total data set to be analyzed.

m

The number of principal components to retain in the analysis.

Examples

Run this code
library(LaplacesDemon)
library(MASS)
n=1000
p=10
m=5
mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))
sigma0=diag(runif(m,1))
F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)
lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
results <- PC1(data, m)
print(results)

Run the code above in your browser using DataLab