Learn R Programming

LFM (version 0.3.2)

PC2: Apply the PC method to the Laplace factor model

Description

This function performs principal component analysis (PCA) on a given data set to reduce dimensionality. It calculates the estimated values for the loadings, specific variances, and the covariance matrix.

Usage

PC2(data, m)

Value

Ahat,Dhat,Sigmahat

Arguments

data

The total data set to be analyzed.

m

The number of principal components to retain in the analysis.

Examples

Run this code
library(LaplacesDemon)
library(MASS)
n=1000
p=10
m=5
mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))
sigma0=diag(runif(m,1))
F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)
lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
results <- PC2(data, m)
print(results)

Run the code above in your browser using DataLab