Learn R Programming

LFM (version 0.3.2)

PPC1: Apply the PPC method to the Laplace factor model

Description

This function computes Perturbation Principal Component Analysis (PPC) for the provided input data, estimating factor loadings and uniquenesses. It calculates mean squared errors and loss metrics for the estimated values compared to true values.

Usage

PPC1(data, m)

Value

Apro,Dpro,Sigmahatpro

Arguments

data

A matrix of input data.

m

The number of principal components.

Examples

Run this code
library(LaplacesDemon)
library(MASS)
n=1000
p=10
m=5
mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))
sigma0=diag(runif(m,1))
F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)
lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
results <- PPC1(data, m)
print(results)

Run the code above in your browser using DataLab