library(monobin)
library(LGDtoolkit)
data(lgd.ds.c)
#stepwise with discretized risk factors
#same procedure can be run on continuous risk factors and mixed risk factor types
num.rf <- sapply(lgd.ds.c, is.numeric)
num.rf <- names(num.rf)[!names(num.rf)%in%"lgd" & num.rf]
num.rf
for (i in 1:length(num.rf)) {
num.rf.l <- num.rf[i]
lgd.ds.c[, num.rf.l] <- sts.bin(x = lgd.ds.c[, num.rf.l], y = lgd.ds.c[, "lgd"])[[2]]
}
str(lgd.ds.c)
set.seed(2211)
blocks <- data.frame(rf = names(lgd.ds.c)[!names(lgd.ds.c)%in%"lgd"],
block = sample(1:3, ncol(lgd.ds.c) - 1, rep = TRUE))
blocks <- blocks[order(blocks$block, blocks$rf), ]
res <- LGDtoolkit::ensemble.blocks(method = "stepFWD",
target = "lgd",
db = lgd.ds.c,
blocks = blocks,
reg.type = "ols",
p.value = 0.05)
names(res)
res$models
summary(res$models[[4]])
Run the code above in your browser using DataLab