library(monobin)
library(LGDtoolkit)
data(lgd.ds.c)
#build dummy model
rf <- c("rf_02", "rf_01", "rf_16", "rf_03", "rf_09")
for (i in 1:length(rf)) {
rf_l <- rf[i]
lgd.ds.c[, rf_l] <- sts.bin(x = lgd.ds.c[, rf_l],
y = lgd.ds.c[, "lgd"])[[2]]
}
str(lgd.ds.c)
frm <- paste0("lgd ~ ", paste(rf, collapse = " + "))
model <- lm(formula = as.formula(frm), data = lgd.ds.c)
summary(model)$coefficients
summary(model)$r.squared
#create lgd pools
lgd.ds.c$pred <- unname(predict(model))
lgd.ds.c$pool <- sts.bin(x = lgd.ds.c$pred,
y = lgd.ds.c$lgd)[[2]]
#create dummy application portfolio
set.seed(642)
app.port <- lgd.ds.c[sample(1:nrow(lgd.ds.c), 500, replace = FALSE), ]
#simulate realized lgd values
app.port$lgd.r <- app.port$lgd
#test heterogeneity
heterogeneity(app.port = app.port,
loss = "lgd.r",
pools = "pool",
method = "t.test",
alpha = 0.05)
Run the code above in your browser using DataLab