library(monobin)
library(LGDtoolkit)
data(lgd.ds.c)
#stepwise with discretized risk factors
#same procedure can be run on continuous risk factors and mixed risk factor types
num.rf <- sapply(lgd.ds.c, is.numeric)
num.rf <- names(num.rf)[!names(num.rf)%in%"lgd" & num.rf]
num.rf
#select subset of numerical risk factors
num.rf <- num.rf[1:10]
for (i in 1:length(num.rf)) {
num.rf.l <- num.rf[i]
lgd.ds.c[, num.rf.l] <- sts.bin(x = lgd.ds.c[, num.rf.l], y = lgd.ds.c[, "lgd"])[[2]]
}
str(lgd.ds.c)
res <- LGDtoolkit::stepFWD(start.model = lgd ~ 1,
p.value = 0.05,
db = lgd.ds.c[, c(num.rf, "lgd")],
reg.type = "ols")
names(res)
summary(res$model)$coefficients
res$steps
summary(res$model)$r.squared
Run the code above in your browser using DataLab