library(monobin)
library(LGDtoolkit)
data(lgd.ds.c)
num.rf <- sapply(lgd.ds.c, is.numeric)
num.rf <- names(num.rf)[!names(num.rf)%in%"lgd" & num.rf]
num.rf
for (i in 1:length(num.rf)) {
num.rf.l <- num.rf[i]
lgd.ds.c[, num.rf.l] <- sts.bin(x = lgd.ds.c[, num.rf.l], y = lgd.ds.c[, "lgd"])[[2]]
}
str(lgd.ds.c)
#define risk factor groups
set.seed(123)
rf.pg <- data.frame(rf = names(lgd.ds.c)[!names(lgd.ds.c)%in%"lgd"],
group = sample(1:5, ncol(lgd.ds.c) - 1, rep = TRUE))
rf.pg <- rf.pg[order(rf.pg$group, rf.pg$r), ]
rf.pg
res <- LGDtoolkit::stepRPC(start.model = lgd ~ 1,
risk.profile = rf.pg,
p.value = 0.05,
db = lgd.ds.c,
reg.type = "ols")
names(res)
summary(res$model)$coefficients
summary(res$model)$r.squared
Run the code above in your browser using DataLab