Learn R Programming

LMMstar (version 1.1.0)

autoplot.summarize: Graphical Display of the Descriptive Statistics

Description

Graphical representation of the descriptive statistics.

Usage

# S3 method for summarize
autoplot(
  object,
  type = "mean",
  variable = NULL,
  size.text = 16,
  linewidth = 1.25,
  size = 3,
  ...
)

# S3 method for summarize plot(x, ...)

Value

A list with two elements

  • data: data used to generate the plot.

  • plot: ggplot object.

Arguments

object, x

an object of class summarize, output of the summarize function.

type

[character] the summary statistic that should be displayed: "mean", "sd", ...

variable

[character] type outcome relative to which the summary statistic should be displayed. Only relevant when multiple variables have been used on the left hand side of the formula when calling summarize.

size.text

[numeric, >0] size of the text in the legend, x- and y- labels.

linewidth

[numeric, >0] thickness of the line connecting the points.

size

[numeric, >0] width of the points.

...

additional arguments passed to .ggHeatmap when displaying the correlation:

  • name.time [character] title for the x- and y- axis.

  • digits.cor [integer, >0] number of digits used to display the correlation.

  • name.legend [character] title for the color scale.

  • title [character] title for the graph.

  • scale [function] color scale used for the correlation.

  • type.cor [character] should the whole correlation matrix be displayed ("both"), or only the element in the lower or upper triangle ("lower", "upper").

  • args.scale [list] arguments to be passed to the color scale.

Functions

  • plot(summarize): Graphical Display of Missing Data Pattern

Examples

Run this code
data(gastricbypassL, package = "LMMstar")
dtS <- summarize(weight ~ time, data = gastricbypassL)
plot(dtS)
dtS <- summarize(glucagonAUC + weight ~ time|id, data = gastricbypassL, na.rm = TRUE)
plot(dtS, variable = "glucagonAUC")
plot(dtS, variable = "glucagonAUC", type = "correlation", size.text = 1)

Run the code above in your browser using DataLab