#### simulate data in the long format ####
set.seed(10)
dL <- sampleRem(100, n.times = 3, format = "long")
#### Linear Model ####
e.lm <- lmm(Y ~ visit + X1 + X2 + X6, data = dL)
## partial residuals
pRes <- residuals(e.lm, type = "partial", variable = "X6")
range(residuals(e.lm) + dL$X6 * coef(e.lm)["X6"] - pRes)
e.reslm <- residuals(e.lm, type = "partial", variable = "X6", keep.data = TRUE, simplify = FALSE)
plot(e.reslm)
## partial residuals with specific reference
residuals(e.lm, type = "partial", variable = "X1",
at = data.frame(visit=factor(2,1:3),X2=0,X6=3))
## partial residuals with centered covariates
residuals(e.lm, type = "partial-center", variable = "X1")
#### Linear Mixed Model ####
eUN.lmm <- lmm(Y ~ visit + X1 + X2 + X5 + X6,
repetition = ~visit|id, structure = "UN", data = dL)
## residuals
e.resL <- residuals(eUN.lmm, type = "normalized",
keep.data = TRUE, simplify = FALSE)
plot(e.resL, type = "qqplot")
plot(e.resL, type = "scatterplot", labeller = ggplot2::label_both)
e.resW <- residuals(eUN.lmm, format = "wide", type = "normalized",
simplify = FALSE)
plot(e.resW, type = "correlation")
## residuals and predicted values
residuals(eUN.lmm, type = "all")
residuals(eUN.lmm, type = "all", keep.data = TRUE)
## partial residuals
residuals(eUN.lmm, type = "partial", variable = c("(Intercept)","visit","X6"))
Run the code above in your browser using DataLab