The Matrix-Normal Inverse-Wishart (MNIW) distribution \((\boldsymbol{B}, \boldsymbol{\Sigma}) \sim \textrm{MNIW}(\boldsymbol{\Lambda}, \boldsymbol{\Omega}, \boldsymbol{\Psi}, \nu)\) on random matrices \(\boldsymbol{X}_{p \times q}\) and symmetric positive-definite \(\boldsymbol{\Sigma}_{q \times q}\) is defined as
$$
\begin{array}{rcl}
\boldsymbol{\Sigma} & \sim & \textrm{Inverse-Wishart}(\boldsymbol{\Psi}, \nu) \\
\boldsymbol{B} \mid \boldsymbol{\Sigma} & \sim & \textrm{Matrix-Normal}(\boldsymbol{\Lambda}, \boldsymbol{\Omega}^{-1}, \boldsymbol{\Sigma}),
\end{array}
$$
where the Matrix-Normal distribution is defined in lmn_suff()
.
The posterior MNIW distribution is required to be a proper distribution, but the prior is not. For example, prior = NULL
corresponds to the noninformative prior
$$
\pi(B, \boldsymbol{\Sigma}) \sim |\boldsymbol{Sigma}|^{-(q+1)/2}.
$$