
Last chance! 50% off unlimited learning
Sale ends in
Function that performs bootstrap parametric resampling to compute standard errors for the parameter estimates.
The function is no longer maintained. Please look at bootstrap
function.
bootstrap_lm_cov_latent(X1, X2, param = "multilogit", Psi, Be, Ga, B = 100,
fort = TRUE)
average of bootstrap estimates of the conditional response probabilities
average of bootstrap estimates of the parameters affecting the logit for the initial probabilities
average of bootstrap estimates of the parameters affecting the logit for the transition probabilities
standard errors for the conditional response probabilities
standard errors for the parameters in Be
standard errors for the parameters in Ga
matrix of covariates affecting the initial probabilities (n x nc1)
array of covariates affecting the transition probabilities (n x TT-1 x nc2)
type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters)
array of conditional response probabilities (mb x k x r)
parameters affecting the logit for the initial probabilities
parametes affecting the logit for the transition probabilities
number of bootstrap samples
to use fortran routine when possible (FALSE for not use fortran)
Francesco Bartolucci, Silvia Pandolfi - University of Perugia (IT)
if (FALSE) {
# Example based on self-rated health status (SRHS) data
# load SRHS data
data(data_SRHS_long)
dataSRHS <- data_SRHS_long
TT <- 8
head(dataSRHS)
res <- long2matrices(dataSRHS$id, X = cbind(dataSRHS$gender-1,
dataSRHS$race == 2 | dataSRHS$race == 3, dataSRHS$education == 4,
dataSRHS$education == 5, dataSRHS$age-50, (dataSRHS$age-50)^2/100),
Y = dataSRHS$srhs)
# matrix of responses (with ordered categories from 0 to 4)
S <- 5-res$YY
# matrix of covariates (for the first and the following occasions)
# colums are: gender,race,educational level (2 columns),age,age^2)
X1 <- res$XX[,1,]
X2 <- res$XX[,2:TT,]
# estimate the model
out1 <- est_lm_cov_latent(S, X1, X2, k = 2, output = TRUE, out_se = TRUE)
out2 <- bootstrap_lm_cov_latent(X1, X2, Psi = out1$Psi, Be = out1$Be, Ga = out1$Ga, B = 1000)
}
Run the code above in your browser using DataLab