lpc.spline(lpcobject, optimize = TRUE, compute.Rc=FALSE,
project=FALSE, ...)
lpc
.optimize
is used to find the point on the curve with minimum distance. Otherwise, data points are only projected onto the closest knot.scaled=TRUE
in lpcobject
).lpc.project.spline
lpc
).project
.lpcobject
.lpc.splinefun
).project
and compute.Rc
- they can take rather long
if the data set is large![2] Einbeck, J., Evers, L. & Hinchliff, K. (2010): Data compression and regression based on local principal curves. In A. Fink, B. Lausen, W. Seidel, and A. Ultsch (Eds), Advances in Data Analysis, Data Handling, and Business Intelligence, Heidelberg, pp. 701--712, Springer.
lpc
data(gvessel)
gvessel.lpc <- lpc(gvessel[,c(2,4,5)], h=0.11, x0=c(35, 1870, 6.3))
gvessel.spline <- lpc.spline(gvessel.lpc)
plot(gvessel.spline, lwd=2)
Run the code above in your browser using DataLab