Learn R Programming

LVMMCOR (version 0.01.1)

LVMMCOR.default: A Latent Variable Model for Mixed Continuous and Ordinal Responses.

Description

A model for mixed ordinal and continuous responses is presented where the heteroscedasticity of the variance of the continuous response is also modeled. In this model ordinal response can be dependent on the continuous response. The aim is to use an approach similar to that of Heckman (1978) for the joint modelling of the ordinal and continuous responses. With this model, the dependence between responses can be taken into account by the correlation between errors in the models for continuous and ordinal responses.

Usage

"LVMMCOR"(ini = NA, X, y, z, p, q, ...)

Arguments

ini
Initial values
X
Design matrix
z
Continuous responses
y
Ordinal responses with three Levels
p
Order of dimension of continuous responses
q
Order of dimension of ordinal responses
...
Other arguments

Value

Continuous Response
Coefficient of continuous response
Variance of Continuous Response
Variance of continuous response
Ordinal response
Coefficient of ordinal response
Cut points
Cut points for ordinal response
Correlation
Coefficient of continuous response
Hessian
Hessian matrix
convergence
An integer code. 0 indicates successful convergence.

Details

Models for LVMMCOR are specified symbolically. A typical model has the form response1 ~ terms and response2 ~ terms where response1and response2 are the (numeric) ordinal and continuous responses vector and terms is a series of terms which specifies a linear predictor for responses. A terms specification of the form first + second indicates all the terms in first together with all the terms in second with duplicates removed. A specification of the form first:second indicates the set of terms obtained by taking the interactions of all terms in first with all terms in second. The specification first*second indicates the cross of first and second. This is the same as first + second + first:second.

References

Bahrami Samani, E., Ganjali, M. and Khodaddadi, A. (2008). A Latent Variable Model for Mixed Continuous and Ordinal Responses. Journal of Statistical Theory and Applications. 7(3):337-349.

See Also

nlminb,fdHess

Examples

Run this code
function (ini = NA, X, y, z, p, q, ...) 
{
    options(warn = -1)
    f <- function(ini, X, y, z, p, q) {
        X = cbind(1, X)
        y <- as.vector(y)
        z <- as.vector(z)
        ini <- as.vector(ini)
        X <- as.matrix(X)
        n = nrow(X)
        muz = muy = muygivenzx = q2 = q1 = l1 = l2 = l3 = muygivenzx = as.vector(0)
        sez <- exp(ini[p + q + 4])
        seygivenzx <- (1 - (ini[p + q + 1])^2)
        for (i in 1:n) {
            muz[i] <- as.numeric(t(ini[1:p]) %*% X[i, ])
            muy[i] <- as.numeric(t(ini[(p + 1):(p + q)]) %*% 
                X[i, -1])
            muygivenzx[i] <- muy[i] + (ini[p + q + 1] * (z[i] - 
                muz[i]))/sez
            q1[i] <- (ini[p + q + 2] - muygivenzx[i])/sqrt(seygivenzx)
            q2[i] <- (ini[p + q + 3] - muygivenzx[i])/sqrt(seygivenzx)
            l1[i] <- log(pnorm(q1[i])) + log(dnorm(z[i], muz[i], 
                sez))
            l2[i] <- log(pnorm(q2[i]) - pnorm(q1[i])) + log(dnorm(z[i], 
                muz[i], sez))
            l3[i] <- log(1 - pnorm(q2[i])) + log(dnorm(z[i], 
                muz[i], sez))
        }
        data0 <- cbind(y, l1)
        data1 <- cbind(y, l2)
        data2 <- cbind(y, l3)
        data0[data0[, 1] == 1, 2] <- 0
        data0[data0[, 1] == 2, 2] <- 0
        data1[data1[, 1] == 0, 2] <- 0
        data1[data1[, 1] == 2, 2] <- 0
        data2[data2[, 1] == 0, 2] <- 0
        data2[data2[, 1] == 1, 2] <- 0
        t0 <- sum(data0[, 2])
        t1 <- sum(data1[, 2])
        t2 <- sum(data2[, 2])
        t <- (c(t0, t1, t2))
        Tfinal <- sum(t)
        return(-Tfinal)
    }
    n = nlminb(ini, f, X = X, y = y, z = z, p = p, q = q, lower = c(rep(-Inf, 
        length(ini)), -0.999, -Inf, -Inf, 0), upper = c(rep(Inf, 
        length(ini)), 0.999, Inf, Inf, Inf), hessian = T)
    h = fdHess(n$par, f, z = z, y = y, X, p, q)
    h1 = h$Hessian
    ih = ginv(h1)
    se = sqrt(abs(diag(ih)))
    n$Hessian <- h1
    n$p <- p
    n$q <- q
    n$se <- as.vector(se)
    n$call <- match.call()
    class(n) <- "LVMMCOR"
    object = n
    Co.Re <- data.frame(Parameter = object$par[1:p], S.E = object$se[1:p], 
        `Confidence Interval` = paste("(", round(object$par[1:p] - 
            2 * object$se[1:p], 3), ",", round(object$par[1:p] + 
            2 * object$se[1:p], 3), ")", sep = ""))
    Or.Re <- data.frame(Parameter = object$par[(p + 1):(p + q)], 
        S.E = object$se[(p + 1):(p + q)], `Confidence Interval` = paste("(", 
            round(object$par[(p + 1):(p + q)] - 2 * object$se[(p + 
                1):(p + q)], 3), ",", round(object$par[(p + 1):(p + 
                q)] + 2 * object$se[(p + 1):(p + q)], 3), ")", 
            sep = ""))
    Cut.P <- data.frame(Parameter = object$par[(p + q + 2):(p + 
        q + 3)], S.E = object$se[(p + q + 2):(p + q + 3)], `Confidence Interval` = paste("(", 
        round(object$par[(p + q + 2):(p + q + 3)] - 2 * object$se[(p + 
            q + 2):(p + q + 3)], 3), ",", round(object$par[(p + 
            q + 2):(p + q + 3)] + 2 * object$se[(p + q + 2):(p + 
            q + 3)], 3), ")", sep = ""))
    Cor <- data.frame(Parameter = object$par[p + q + 1], S.E = object$se[p + 
        q + 1], `Confidence Interval` = paste("(", round(object$par[p + 
        q + 1] - 2 * object$se[p + q + 1], 3), ",", round(object$par[p + 
        q + 1] + 2 * object$se[p + q + 1], 3), ")", sep = ""))
    Var <- data.frame(Parameter = object$par[p + q + 4], S.E = object$se[p + 
        q + 4], `Confidence Interval` = paste("(", round(object$par[p + 
        q + 4] - 2 * object$se[p + q + 4], 3), ",", round(object$par[p + 
        q + 4] + 2 * object$se[p + q + 4], 3), ")", sep = ""))
    row.names(Cut.P) <- c("cut point1", "cut point2")
    res <- list(call = object$call, `Continuos Response` = Co.Re, 
        `Variance Of Countinous Response` = Var, `Ordinal Response` = Or.Re, 
        `Cut points` = Cut.P, Correlation = Cor)
    res$Hessian <- h1
    res$convergence <- n$convergence
    res$call <- match.call()
    class(res) <- "LVMMCOR"
    res
  }

Run the code above in your browser using DataLab