Learn R Programming

⚠️There's a newer version (1.0.3) of this package.Take me there.

LZeroSpikeInference: A package for estimating spike times from calcium imaging data using an L0 penalty

This package implements an algorithm for deconvolving calcium imaging data for a single neuron in order to estimate the times at which the neuron spikes.

This algorithm solves the optimization problems

AR(1) model

minimize_{c1,...,cT} 0.5 sum_{t=1}^T ( y_t - c_t )^2 + lambda sum_{t=2}^T 1_{c_t neq gamma c_{t-1} }

for the global optimum, where y_t is the observed fluorescence at the tth timepoint.

AR(1) with intercept

minimize_{c1,...,cT,b1,...,bT} 0.5 sum_{t=1}^T (y_t - c_t - b_t)^2 + lambda sum_{t=2}^T 1_{c_t neq gamma c_{t-1}, b_t neq b_{t-1} }

where the indicator variable 1_{(A,B)} equals 1 if the event A cup B holds, and equals zero otherwise.

Install

If devtools is installed type

devtools::install_github("jewellsean/LZeroSpikeInference")

Usage

Once installed type

library(LZeroSpikeInference)
?LZeroSpikeInference

Reference

See Jewell and Witten, Exact Spike Train Inference Via L0 Optimization (2017)

Copy Link

Version

Install

install.packages('LZeroSpikeInference')

Monthly Downloads

157

Version

1.0.1

License

GPL-3

Maintainer

Sean Jewell

Last Published

May 18th, 2017

Functions in LZeroSpikeInference (1.0.1)

plot.estimatedSpikes

Plot the solution to an L0 segmentation problem
plot.simdata

Plot simulated data
estimateSpikes

Estimate spike train, underlying calcium concentration, and changepoints based on fluorescence trace.
plot.cvSpike

Plot mean squared error vs. tuning parameter from the cross-validation output
print.cvSpike

Print CV results
print.estimatedSpikes

Print estimated spikes
LZeroSpikeInference

LZeroSpikeInference: LZeroSpikeInference: A package for estimating spike times from calcium imaging data using an L0 penalty
cv.estimateSpikes

Cross-validate and optimize model parameters
print.simdata

Print simulated data
simulateAR1

Simulate fluorescence trace based on simple AR(1) generative model