Learn R Programming

LadderFuelsR (version 0.0.6)

get_depths: Fuels depth in meters

Description

This function calculates fuels depth as the difference between gaps interleaved between fuel layers minus one step if the fuel depths are greater than one step.

Usage

get_depths (LAD_profiles, distance_metrics,step= 1,min_height= 1.5, verbose=TRUE)

Value

A data frame giving fuel layers depth and the height of the depths in meters.

Arguments

LAD_profiles

original tree Leaf Area Density (LAD) profile (output of [lad.profile()] function in the leafR package. An object of the class text.

distance_metrics

tree metrics with gaps (distances) and fuel base heights (output of [get_distance()] function). An object of the class text.

step

Numeric value for the actual height bin step (in meters).

min_height

Numeric value for the actual minimum base height (in meters).

verbose

Logical, indicating whether to display informational messages (default is TRUE).

Author

Olga Viedma, Carlos Silva, JM Moreno and A.T. Hudak

Details

# List of tree metrics:

  • treeID: tree ID with strings and numeric values

  • treeID1: tree ID with only numeric values

  • cbh - Height of the fuel layers base height (m)

  • gap - Height of gaps between consecutive fuel layers (m)

  • dist: Distance between consecutive fuel layers (m)

  • Hdist - Height of the distance between consecutive fuel layers (m)

  • depth - Depth of fuel layers (m)

  • Hdepth - Height of the depth of fuel layers (m)

  • max_height - Maximum height of the tree profile

See Also

get_distance

Examples

Run this code
library(magrittr)
library(dplyr)

# Before running this example, make sure to run get_distance().
if (interactive()) {
distance_metrics <- get_distance()
LadderFuelsR::LAD_profiles$treeID <- factor(LadderFuelsR::LAD_profiles$treeID)
LadderFuelsR::distance_metrics$treeID <- factor(LadderFuelsR::distance_metrics$treeID)

metrics_depth_list <- list()

for (i in levels(LAD_profiles$treeID)){

tree1 <- LAD_profiles |> dplyr::filter(treeID == i)
tree2 <- distance_metrics |> dplyr::filter(treeID == i)

# Get depths for each tree
metrics_depth <- get_depths(tree1, tree2,step= 1,min_height= 1.5, verbose=TRUE)
metrics_depth_list[[i]] <- metrics_depth
}

# Combine the individual data frames
depth_metrics <- dplyr::bind_rows(metrics_depth_list)
}

Run the code above in your browser using DataLab