
Last chance! 50% off unlimited learning
Sale ends in
The parameter
beta2tau
converts tau-utils
). Parameters use.mean.variance = TRUE
; in this case
beta2tau
will throw an error).
check_beta
checks if 'sigma'
must be
positive.
estimate_beta
estimates fitdistr
.
get_beta_names
returns (typical) names for each component of
Depending on the distribution
"normal"
distribution beta
is of length
"mu"
, "sigma"
); for an "exp"
onential
distribution beta
is a scalar (rate "lambda"
).
beta2tau(beta, distname, use.mean.variance = TRUE)check_beta(beta, distname)
estimate_beta(x, distname)
get_beta_names(distname)
beta2tau
returns a numeric vector, which is beta
and distname
.
check_beta
throws an error if beta['sigma']
of a
"normal"
distribution must be positive).
estimate_beta
returns a named vector with estimates for
x
.
get_beta_names
returns a vector of characters.
numeric; vector distname = "exp"
, then beta = 2
means that the rate of the exponential distribution equals distname = "normal"
then beta = c(1,2)
means that the mean and
standard deviation are 1 and 2, respectively.
character; name of input distribution; see
get_distnames
.
logical; if TRUE
it uses mean and variance
implied by FALSE
, it uses the alternative definition from Goerg (2016)
with location and scale parameter.
a numeric vector of real values (the input data).
estimate_beta
does not do any data transformation as part of the
Lambert Wget_initial_theta
and get_initial_tau
.
A quick initial estimate of IGMM
, and then getting the MLE of fitdistr
).
tau-utils
, theta-utils
# By default: delta = gamma = 0 and alpha = 1
beta2tau(c(1, 1), distname = "normal")
if (FALSE) {
beta2tau(c(1, 4, 1), distname = "t")
}
beta2tau(c(1, 4, 1), distname = "t", use.mean.variance = FALSE)
beta2tau(c(1, 4, 3), distname = "t") # no problem
if (FALSE) {
check_beta(beta = c(1, 1, -1), distname = "normal")
}
set.seed(124)
xx <- rnorm(100)^2
estimate_beta(xx, "exp")
estimate_beta(xx, "chisq")
Run the code above in your browser using DataLab