```
# NOT RUN {
# The accompanying Examples vignette is a compendium of examples.
#################### Load the LaplacesDemon Library #####################
library(LaplacesDemon)
############################## Demon Data ###############################
data(demonsnacks)
y <- log(demonsnacks$Calories)
X <- cbind(1, as.matrix(log(demonsnacks[,10]+1)))
J <- ncol(X)
for (j in 2:J) X[,j] <- CenterScale(X[,j])
######################### Data List Preparation #########################
mon.names <- "mu[1]"
parm.names <- as.parm.names(list(beta=rep(0,J), sigma=0))
pos.beta <- grep("beta", parm.names)
pos.sigma <- grep("sigma", parm.names)
PGF <- function(Data) {
beta <- rnorm(Data$J)
sigma <- runif(1)
return(c(beta, sigma))
}
MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names,
parm.names=parm.names, pos.beta=pos.beta, pos.sigma=pos.sigma, y=y)
########################## Model Specification ##########################
Model <- function(parm, Data)
{
### Parameters
beta <- parm[Data$pos.beta]
sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)
parm[Data$pos.sigma] <- sigma
### Log-Prior
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))
sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)
### Log-Likelihood
mu <- tcrossprod(Data$X, t(beta))
LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))
### Log-Posterior
LP <- LL + beta.prior + sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=mu[1],
yhat=rnorm(length(mu), mu, sigma), parm=parm)
return(Modelout)
}
############################ Initial Values #############################
#Initial.Values <- GIV(Model, MyData, PGF=TRUE)
Initial.Values <- rep(0,J+1)
#Fit <- VariationalBayes(Model, Initial.Values, Data=MyData, Covar=NULL,
# Iterations=1000, Method="Salimans2", Stop.Tolerance=1e-3, CPUs=1)
#Fit
#print(Fit)
#PosteriorChecks(Fit)
#caterpillar.plot(Fit, Parms="beta")
#plot(Fit, MyData, PDF=FALSE)
#Pred <- predict(Fit, Model, MyData, CPUs=1)
#summary(Pred, Discrep="Chi-Square")
#plot(Pred, Style="Covariates", Data=MyData)
#plot(Pred, Style="Density", Rows=1:9)
#plot(Pred, Style="Fitted")
#plot(Pred, Style="Jarque-Bera")
#plot(Pred, Style="Predictive Quantiles")
#plot(Pred, Style="Residual Density")
#plot(Pred, Style="Residuals")
#Levene.Test(Pred)
#Importance(Fit, Model, MyData, Discrep="Chi-Square")
#Fit$Covar is scaled (2.38^2/d) and submitted to LaplacesDemon as Covar.
#Fit$Summary[,1] is submitted to LaplacesDemon as Initial.Values.
#End
# }
```

Run the code above in your browser using DataLab