betanew_lasso_cpp: C++ subroutine that updates \(\beta\) coefficients.
Description
This function updates \(\beta\) for given penalty parameters.
Usage
betanew_lasso_cpp(xx, xy, beta, M, y, Lambda1, Lambda2, iter, tol)
Arguments
xx
Bx matrix
xy
By vector
beta
initial value for \(\beta\); default - zero vector of size \(p \times 1\)
M
penalty matrix
y
response vector or size \(n \times 1\)
Lambda1
lasso penalty parameter
Lambda2
network penalty parameter
iter
maximum number of iterations for \(\beta\) step
tol
convergence tolerance level
Value
beta
updated \(\beta\) vector
steps
number of steps until convergence
Details
See beta.update.net
References
Weber, M., Striaukas, J., Schumacher, M., Binder, H. "Network-Constrained Covariate Coefficient and Connection Sign Estimation" (2018) <doi:10.2139/ssrn.3211163>
# NOT RUN {p<-200n<-100beta.0=array(1,c(p,1))
x<-matrix(rnorm(n*p),n,p)
y<-rnorm(n,mean=0,sd=1)
lambda1<-1lambda2<-1M1<-diag(p)
updates<-beta.update.net(x, y, beta.0, lambda1, lambda2, M1)
# }