Learn R Programming

LatentBMA (version 0.1.2)

plotPIP: Visualization of Posterior Inclusion Probabilities

Description

plotPIP produces a visualization of the posterior inclusion probabilities (PIPs) extracted from ULLGM_BMA results.

Usage

plotPIP(x,
        variable_names = NULL,
        sort           = TRUE)

Value

Returns a 'ggplot2::ggplot' object.

Arguments

x

The output object of ULLGM_BMA.

variable_names

A character vector specifying the names of the columns of X.

sort

Logical, indicating whether the plot should be sorted by PIP. Defaults to TRUE.

Author

Gregor Zens

Examples

Run this code
# Load package
library(LatentBMA)

# Example: Estimate a PLN model under a BRIC prior with m = p/2 using simulated data
# Note: Use more samples for actual analysis
# Note: nsave = 250 and nburn = 250 are for demonstration purposes
X <- matrix(rnorm(100*20), 100, 20)
z <- 2 + X %*% c(0.5, -0.5, rep(0, 18)) + rnorm(100, 0, sqrt(0.25))
y <- rpois(100, exp(z))
results_pln <- ULLGM_BMA(X = X, y = y, model = "PLN", nsave = 250, nburn = 250)
plotPIP(results_pln)

Run the code above in your browser using DataLab