powered by
Computes the log posterior density of logit mean and log precision for a Binomial/beta exchangeable model
betabinexch(theta,data)
value of the log posterior
vector of parameter values of logit eta and log K
a matrix with columns y (counts) and n (sample sizes)
Jim Albert
n=c(20,20,20,20,20) y=c(1,4,3,6,10) data=cbind(y,n) theta=c(-1,0) betabinexch(theta,data)
Run the code above in your browser using DataLab