powered by
Computes the posterior distribution for an arbitrary one parameter distribution for a discrete prior distribution.
discrete.bayes(df,prior,y,...)
vector of posterior probabilities
scalar with prior predictive probability
name of the function defining the sampling density
vector defining the prior density; names of the vector define the parameter values and entries of the vector define the prior probabilities
vector of data values
any further fixed parameter values used in the sampling density function
Jim Albert
prior=c(.25,.25,.25,.25) names(prior)=c(.2,.25,.3,.35) y=5 n=10 discrete.bayes(dbinom,prior,y,size=n)
Run the code above in your browser using DataLab