Usage
tuneFeatureNb(data, cl = 1, feature.ranking, step.nb = 10, valid.times = 10, cost = NULL, gamma = NULL, kernel = "linear", numcores = ifelse(.Platform$OS.type == "windows", 1, parallel::detectCores() - 1), file.prefix = NULL)
Arguments
data
data.frame containing the training set
cl
integer indicating the column number corresponding to the response vector that classify positive and negative regions (default = 1)
feature.ranking
List of ordered features.
step.nb
Number of features to add at each step (default = 10)
valid.times
Integer indicating how many times the training set will be split for the cross validation step (default = 10). This number must be smaller than positive and negative sets sizes.
cost
The SVM cost parameter for both linear and radial kernels. If NULL (default), the function mcTune
is run.
gamma
The SVM gamma parameter for radial kernel. If radial kernel and NULL (default), the function mcTune
is run.
kernel
SVM kernel, a character string: "linear" or "radial". (default = "radial")
numcores
Number of cores to use for parallel computing (default: the number of available cores in the machine - 1)
file.prefix
A character string that will be used as a prefix followed by "_kappa_measures.png" for the result plot file. If it is NULL (default), no plot is returned